Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Expert Opin Drug Discov ; 19(6): 649-670, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715415

RESUMO

INTRODUCTION: Modern drug discovery revolves around designing ligands that target the chosen biomolecule, typically proteins. For this, the evaluation of affinities of putative ligands is crucial. This has given rise to a multitude of dedicated computational and experimental methods that are constantly being developed and improved. AREAS COVERED: In this review, the authors reassess both the industry mainstays and the newest trends among the methods for protein - small-molecule affinity determination. They discuss both computational affinity predictions and experimental techniques, describing their basic principles, main limitations, and advantages. Together, this serves as initial guide to the currently most popular and cutting-edge ligand-binding assays employed in rational drug design. EXPERT OPINION: The affinity determination methods continue to develop toward miniaturization, high-throughput, and in-cell application. Moreover, the availability of data analysis tools has been constantly increasing. Nevertheless, cross-verification of data using at least two different techniques and careful result interpretation remain of utmost importance.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Proteínas , Ligantes , Proteínas/metabolismo , Humanos , Descoberta de Drogas/métodos , Desenho de Fármacos/métodos , Ligação Proteica , Ensaios de Triagem em Larga Escala/métodos
2.
Eur J Med Chem ; 273: 116505, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38788300

RESUMO

Human Hsp90 chaperones are implicated in various aspects of cancer. Due to this, Hsp90 has been explored as potential target in cancer treatment. Initial attempts to use Hsp90 inhibitors in drug trials failed due to toxicity and inefficacy. The next generation of drugs were less toxic but still insufficiently effective in a clinical setting. Recently, a lot of effort is being put into understanding the consequences of Hsp90 isoform selective inhibition, expecting that this might hold the key in targeting Hsp90 for disease treatment. Here we investigate a series of compounds containing the aryl-resorcinol scaffold with a 5-membered ring as a promising class of new human Hsp90 inhibitors, reaching nanomolar affinity. We compare how the replacement of 5-membered ring, from thiadiazole to imidazole, as well as a variety of their substituents, influences the potency of these inhibitors for Hsp90 alpha and beta isoforms. To further elucidate the dissimilarity in ligand selectivity between the isoforms, a mutant protein was constructed and tested against the ligand library. In addition, we performed a series of molecular dynamics (MD) and docking simulations to further explain our experimental findings as well as evaluated key compounds in cell assays. Our results deepen the understanding of Hsp90 isoform ligand selectivity and serve as an informative base for further Hsp90 inhibitor optimization.


Assuntos
Desenho de Fármacos , Proteínas de Choque Térmico HSP90 , Imidazóis , Resorcinóis , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Resorcinóis/química , Resorcinóis/farmacologia , Resorcinóis/síntese química , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química
3.
Database (Oxford) ; 20232023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290059

RESUMO

We introduce a protein-ligand binding database (PLBD) that presents thermodynamic and kinetic data of reversible protein interactions with small molecule compounds. The manually curated binding data are linked to protein-ligand crystal structures, enabling structure-thermodynamics correlations to be determined. The database contains over 5500 binding datasets of 556 sulfonamide compound interactions with the 12 catalytically active human carbonic anhydrase isozymes defined by fluorescent thermal shift assay, isothermal titration calorimetry, inhibition of enzymatic activity and surface plasmon resonance. In the PLBD, the intrinsic thermodynamic parameters of interactions are provided, which account for the binding-linked protonation reactions. In addition to the protein-ligand binding affinities, the database provides calorimetrically measured binding enthalpies, providing additional mechanistic understanding. The PLBD can be applied to investigations of protein-ligand recognition and could be integrated into small molecule drug design. Database URL https://plbd.org/.


Assuntos
Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Humanos , Ligantes , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/metabolismo , Termodinâmica , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Ligação Proteica
4.
Drug Discov Today ; 27(8): 2076-2079, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35577233

RESUMO

The thermal shift assay is one of the most universal techniques to determine protein-ligand affinities ranging from millimolar to picomolar levels in a single ligand dosing experiment. However, the complexity of thermodynamic data analysis leads to an underuse of this technique. We have developed a user-friendly, open-source, free online analysis software to study any protein-ligand interaction thermal shift data and yield a comprehensive thermodynamic characterization of the binding reaction.


Assuntos
Proteínas , Fenômenos Biofísicos , Ligantes , Ligação Proteica , Proteínas/química , Termodinâmica
5.
Pancreas ; 50(4): 625-632, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33939678

RESUMO

OBJECTIVES: Pancreatic ductal adenocarcinoma is one of the deadliest cancers for which few curative therapies are available to date. Heat shock protein 90 (Hsp90) inhibitors have shown activity against numerous cancers in vitro; therefore, we tested whether they could be used to target pancreatic ductal adenocarcinoma. METHODS: Inhibitors of Hsp90 ATPase activity were applied on low-passage pancreatic cell line cultures (Panc10.05, Panc215, A6L) in a dose-response manner, and the inhibitor in vitro effect on cell growth was evaluated. Seven of novel Hsp90 inhibitors based on resorcinol fragment and 5 commercially available Hsp90 inhibitors (17-AAG, AT-13387, AUY-922, ganetespib, and rifabutin) as well as control compound triptolide were tested yielding IC50 values in 2- and 3-dimensional assays. RESULTS: The novel Hsp90 inhibitors exhibited strong effects on all 3 tested pancreatic cell line cultures (Panc10.05, Panc215, A6L) reaching the IC50 of 300 to 600 nM in 2- and 3-dimensional assays. CONCLUSIONS: Novel Hsp90 inhibitors can be developed as antipancreatic cancer agents. Their chemical structures are simpler, and they are likely to exhibit lower side effects than the much more complex inhibitors used as controls.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias Pancreáticas/metabolismo , Adenosina Trifosfatases/metabolismo , Antineoplásicos/química , Benzamidas/química , Benzamidas/farmacologia , Benzoquinonas/química , Benzoquinonas/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Técnicas de Cultura de Células em Três Dimensões/métodos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Isoindóis/química , Isoindóis/farmacologia , Isoxazóis/química , Isoxazóis/farmacologia , Lactamas Macrocíclicas/química , Lactamas Macrocíclicas/farmacologia , Estrutura Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Resorcinóis/química , Resorcinóis/farmacologia , Rifabutina/química , Rifabutina/farmacologia , Triazóis/química , Triazóis/farmacologia
6.
Eur Biophys J ; 50(3-4): 373-379, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33914114

RESUMO

A standard operating procedure for a fluorescence-based thermal shift assay (FTSA) is provided describing its typical applications, advantages and limitations. FTSA is a simple, robust, universal and quick assay to determine protein-ligand binding affinities and protein stabilities in the presence of various excipients and solution conditions. Therefore, the assay is very useful for the straightforward characterization of new recombinantly produced proteins. The assay has a wide dynamic range enabling simultaneous determination of affinities in the milimolar to picomolar range. The assay could be used for essentially any protein that is sufficiently soluble and stable in the studied aqueous solution. Here we provide examples and typical experimental protocols for both affinity and stability determinations.


Assuntos
Estabilidade Proteica , Ligantes , Ligação Proteica , Proteínas/metabolismo
7.
Expert Opin Drug Discov ; 14(8): 755-768, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31146609

RESUMO

Introduction: In pharmaceutical design where future drugs are developed by targeting a specific chosen protein, the evaluation of ligand affinity is crucial. For this very purpose are a multitude of diverse methods which are continuously being improved, which, in turn, makes it difficult to choose which techniques to use in practice. Areas covered: In this review, the authors discuss both experimental and computational approaches for affinity evaluation. Basic principles, general limitations and advantages, as well as main areas of application in drug discovery, are overviewed for some of the most popular ligand binding assays. The authors further provide a guide to affinity predictions, collectively covering several techniques that are used in the first stages of rational drug design. Expert opinion: All affinity estimation methods have limitations and advantages that partially overlap and complement one another. Some of the suggested best practices include cross-verification of data using at least two different techniques and careful data interpretation.


Assuntos
Desenho de Fármacos , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Humanos , Ligantes , Ligação Proteica , Proteínas/metabolismo
8.
Biol Chem ; 399(4): 337-345, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29337688

RESUMO

The human genome encodes two highly similar cytosolic Hsp90 proteins called isoforms Hsp90α and Hsp90ß. Of the 300 client proteins for Hsp90 identified so far only a handful interact specifically with one Hsp90 isoform. Here we report for the first time that Hsp90 cochaperone p23 binds preferentially to Hsp90α and that this interaction is mediated by the middle domain of Hsp90α. Based on the homology modeling, we infer that the middle domains in the Hsp90α dimer bind stronger with each other than in the Hsp90ß dimer. Therefore, compared to Hsp90ß, Hsp90α may adopt closed conformation more easily. Hsp90 interacts with p23 in the closed conformation. Hsp90α binds human recombinant p23 about three times stronger than Hsp90ß but with significantly smaller exothermic enthalpy as determined by isothermal titration calorimetry of direct binding between the purified proteins. As p23 binds to Hsp90 in a closed conformation, stabilization of the Hsp90α dimer in the closed conformation by its middle domains explains preference of p23 to this Hsp90 isoform.


Assuntos
Proteínas de Choque Térmico HSP90/química , Chaperonas Moleculares/química , Células Cultivadas , Dimerização , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Conformação Proteica
9.
Anticancer Agents Med Chem ; 17(11): 1593-1603, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-28270068

RESUMO

BACKGROUND: Human Hsp90 chaperone inhibitors are known to be potential anticancer drugs. Previously we have shown a couple of 5-aryl-4-(2,4-dihydroxyphenyl)-1,2,3-thiadiazoles to be promising anticancer agents. OBJECTIVE: To improve the compounds containing 4-(2,4-dihydroxyphenyl)-1,2,3-thiadiazole scaffold as human Hsp90 inhibitors. METHOD: We employed chemical synthesis to obtain new compounds and assayed their binding to Hsp90 using the fluorescence thermal shift assay and used MTT assays to determine their effect on cancer cells. RESULTS: A series of compounds containing the 4-(2,4-dihydroxyphenyl)-1,2,3-thiadiazole scaffold were synthesized as Hsp90 inhibitors. Analysis of their binding to the recombinant N-terminal domain of Hsp90 revealed that four of these compounds bound to Hsp90 with Kd of 0.6 to 0.8 nM. The compounds fully inhibited the growth of all tested cancer cell lines: A549 (lung adenocarcinoma), IGR39 (melanoma), and U87 (glioblastoma), with the effective antiproliferative concentration (EC50) of the compounds reaching 0.35 µM. CONCLUSION: This series of 14 novel and efficient Hsp90 inhibitors provided additional information on the structure-activity relationship of Hsp90 inhibitors and may be further developed into drugs targeting Hsp90.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Resorcinóis/farmacologia , Tiadiazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Estrutura Molecular , Resorcinóis/síntese química , Resorcinóis/química , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/química , Células Tumorais Cultivadas
10.
J Med Chem ; 57(22): 9435-46, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25358084

RESUMO

Human carbonic anhydrase IX (CA IX) is highly expressed in tumor tissues, and its selective inhibition provides a potential target for the treatment of numerous cancers. Development of potent, highly selective inhibitors against this target remains an unmet need in anticancer therapeutics. A series of fluorinated benzenesulfonamides with substituents on the benzene ring was designed and synthesized. Several of these exhibited a highly potent and selective inhibition profile against CA IX. Three fluorine atoms significantly increased the affinity by withdrawing electrons and lowering the pKa of the benzenesulfonamide group. The bulky ortho substituents, such as cyclooctyl or even cyclododecyl groups, fit into the hydrophobic pocket in the active site of CA IX but not CA II, as shown by the compound's co-crystal structure with chimeric CA IX. The strongest inhibitor of recombinant human CA IX's catalytic domain in human cells achieved an affinity of 50 pM. However, the high affinity diminished the selectivity. The most selective compound for CA IX exhibited 10 nM affinity. The compound that showed the best balance between affinity and selectivity bound with 1 nM affinity. The inhibitors described in this work provide the basis for novel anticancer therapeutics targeting CA IX.


Assuntos
Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Desenho de Fármacos , Benzeno/química , Calorimetria , Dióxido de Carbono/química , Anidrase Carbônica IV/química , Catálise , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Humanos , Concentração de Íons de Hidrogênio , Cinética , Neoplasias/tratamento farmacológico , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Sulfonamidas/química , Termodinâmica
11.
PLoS One ; 7(9): e44642, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984537

RESUMO

A potential therapeutic strategy for targeting cancer that has gained much interest is the inhibition of the ATP binding and ATPase activity of the molecular chaperone Hsp90. We have determined the structure of the human Hsp90α N-terminal domain in complex with a series of 5-aryl-4-(5-substituted-2-4-dihydroxyphenyl)-1,2,3-thiadiazoles. The structures provide the molecular details for the activity of these inhibitors. One of these inhibitors, ICPD 34, causes a structural change that affects a mobile loop, which adopts a conformation similar to that seen in complexes with ADP, rather than the conformation generally seen with the pyrazole/isoxazole-resorcinol class of inhibitors. Competitive binding to the Hsp90 N-terminal domain was observed in a biochemical assay, and these compounds showed antiproliferative activity and induced apoptosis in the HCT116 human colon cancer cell line. These inhibitors also caused induction of the heat shock response with the upregulation of Hsp72 and Hsp27 protein expression and the depletion of Hsp90 clients, CRAF, ERBB2 and CDK4, thus confirming that antiproliferative activity was through the inhibition of Hsp90. The presence of increased levels of the cleavage product of PARP indicated apoptosis in response to Hsp90 inhibitors. This work provides a framework for the further optimization of thiadiazole inhibitors of Hsp90. Importantly, we demonstrate that the thiadiazole inhibitors display a more limited core set of interactions relative to the clinical trial candidate NVP-AUY922, and consequently may be less susceptible to resistance derived through mutations in Hsp90.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Tiadiazóis/química , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Cristalização , Cristalografia por Raios X/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico HSP72/química , Proteínas de Choque Térmico HSP90/química , Humanos , Técnicas In Vitro , Concentração Inibidora 50 , Modelos Químicos , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química
12.
Hum Mol Genet ; 21(21): 4615-27, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22843495

RESUMO

Pancreas cancer cells escape most treatment options. Heat shock protein (Hsp)90 is frequently over-expressed in pancreas carcinomas and protects a number of cell-cycle regulators such as the proto-oncogene Cdc25A. We show that inhibition of Hsp90 with geldanamycin (GD) destabilizes Cdc25A independent of Chk1/2, whereas the standard drug for pancreas carcinoma treatment, gemcitabine (GEM), causes Cdc25A degradation through the activation of Chk2. Both agents applied together additively inhibit the expression of Cdc25A and the proliferation of pancreas carcinoma cells thereby demonstrating that both Cdc25A-destabilizing/degrading pathways are separated. The role of Hsp90 as stabilizer of Cdc25A in pancreas carcinoma cells is further supported by two novel synthetic inhibitors 4-tosylcyclonovobiocic acid and 7-tosylcyclonovobiocic acid and specific Hsp90AB1 (Hsp90ß) shRNA. Our data show that targeting Hsp90 reduced the resistance of pancreas carcinoma cells to treatment with GEM.


Assuntos
Proteínas de Ciclo Celular , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90 , Neoplasias Pancreáticas , Fosfatases cdc25 , Benzoquinonas/farmacologia , Proteínas de Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Lactamas Macrocíclicas/farmacologia , Novobiocina/análogos & derivados , Novobiocina/farmacologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise/efeitos dos fármacos , Proto-Oncogene Mas , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo , Gencitabina , Neoplasias Pancreáticas
13.
PLoS One ; 7(5): e36899, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22655030

RESUMO

The design of specific inhibitors against the Hsp90 chaperone and other enzyme relies on the detailed and correct understanding of both the thermodynamics of inhibitor binding and the structural features of the protein-inhibitor complex. Here we present a detailed thermodynamic study of binding of aryl-dihydroxyphenyl-thiadiazole inhibitor series to recombinant human Hsp90 alpha isozyme. The inhibitors are highly potent, with the intrinsic K(d) approximately equal to 1 nM as determined by isothermal titration calorimetry (ITC) and thermal shift assay (TSA). Dissection of protonation contributions yielded the intrinsic thermodynamic parameters of binding, such as enthalpy, entropy, Gibbs free energy, and the heat capacity. The differences in binding thermodynamic parameters between the series of inhibitors revealed contributions of the functional groups, thus providing insight into molecular reasons for improved or diminished binding efficiency. The inhibitor binding to Hsp90 alpha primarily depended on a large favorable enthalpic contribution combined with the smaller favorable entropic contribution, thus suggesting that their binding was both enthalpically and entropically optimized. The enthalpy-entropy compensation phenomenon was highly evident when comparing the inhibitor binding enthalpies and entropies. This study illustrates how detailed thermodynamic analysis helps to understand energetic reasons for the binding efficiency and develop more potent inhibitors that could be applied for therapeutic use as Hsp90 inhibitors.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Tiadiazóis/química , Tiadiazóis/farmacologia , Calorimetria , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Ligação Proteica , Termodinâmica
14.
Bioorg Med Chem Lett ; 19(4): 1089-92, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19168355

RESUMO

A series of 5-aryl-4-(5-substituted-2,4-dihydroxyphenyl)-1,2,3-thiadiazoles were synthesized and their binding to several constructs of human Hsp90 chaperone measured by isothermal titration calorimetry (ITC). The most potent compound bound Hsp90 with the dissociation constant of about 5 nM.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Chaperonas Moleculares/antagonistas & inibidores , Pirazóis/síntese química , Pirazóis/farmacologia , Tiadiazóis/síntese química , Tiadiazóis/farmacologia , Técnicas de Química Combinatória , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Pirazóis/química , Tiadiazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA