Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38730886

RESUMO

In silicon carbide processing, the surface and subsurface damage caused by fixed abrasive grinding significantly affects the allowance of the next polishing process. A novel grinding wheel with a soft and hard composite structure was fabricated for the ultra-precision processing of SiC substrates, and the grinding performance of the grinding wheel was assessed in this study. Different types of gels, heating temperatures, and composition ratios were used to fabricate the grinding wheel. The grinding performance of the grinding wheel was investigated based on the surface integrity and subsurface damage of SiC substrates. The results showed that the grinding wheel with a soft and hard composite structure was successfully fabricated using freeze-dried gel with a heating temperature of 110 °C, and the component ratio of resin to gel was 4:6. A smooth SiC substrate surface with almost no cracks was obtained after processing with the grinding wheel. The abrasive exposure height was controlled by manipulating the type and ratio of the gel. Furthermore, the cutting depth in nanoscale could be achieved by controlling the abrasive exposure height. Therefore, the fabrication and application of the grinding wheels with soft and hard composite structures is important for the ultra-precision processing of large-size SiC substrates.

2.
Adv Sci (Weinh) ; 10(28): e2302813, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37530215

RESUMO

Memristors with nonvolatile storage performance and simulated synaptic functions are regarded as one of the critical devices to overcome the bottleneck in traditional von Neumann computer architecture. 2D van der Waals heterostructures have paved a new way for the development of advanced memristors by integrating the intriguing features of different materials and offering additional controllability over their optoelectronic properties. Herein, planar memristors with both electrical and optical tunability based on ReS2 /WS2 van der Waals heterostructure are demonstrated. The devices show unique unipolar nonvolatile behavior with high Roff /Ron ratio of up to 106 , desirable endurance, and retention, which are superior to pure ReS2 and WS2 devices. When decreasing the channel length, the set voltage can be notably reduced while the high Roff /Ron ratios are retained. By introducing electrostatic doping through the gate control, the set voltage can be tailored in a wide range from 4.50 to 0.40 V. Furthermore, biological synaptic functions and plasticity, including spike rate-dependent plasticity and paired-pulse facilitation, are successfully realized. By employing optical illumination, resistive switching can also be modulated, which is dependent on the illumination energy and power. A mechanism related to the interlayer charge transfer controlled by optical excitation is revealed.

3.
ACS Appl Mater Interfaces ; 13(29): 35097-35104, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34259493

RESUMO

Transition-metal dichalcogenides with intrinsic spin-valley degree of freedom have enabled great potentials for valleytronic and optoelectronic applications. However, the degree of valley polarization is usually low under nonresonant excitation at room temperature due to the phonon-assisted intervalley scattering. Here, achiral and chiral Au arrays are designed to enhance the optical response and valley polarization in monolayer and bilayer WS2. A considerable band edge emission with 7 times increment is realized under the resonant coupling with Au dimer-prism arrays. Valley polarization enhancement is quantitatively predicted by the inherent mechanisms from elevated electromagnetic field intensity and radiation efficiency and further realized in polarized photoluminescence. A tunable valley polarization up to 30.0% is achieved in bilayer WS2 under a nonresonant excitation at room temperature. All of these results provide a promising route toward the development of room-temperature valley-dependent optoelectronic devices.

4.
Nanoscale Res Lett ; 16(1): 104, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34114126

RESUMO

Two-dimensional Janus materials have great potential for the applications in spintronic devices due to their particular structures and novel characteristics. However, they are usually non-magnetic in nature. Here, different transition metals (TMs: Co, Fe, Mn, Cr, and V) adsorbed WSSe frameworks are constructed, and their structures and magnetic properties are comprehensively investigated by first-principles calculations. The results show that the top of W atom is the most stable absorption site for all the TM atoms, and all the systems exhibit magnetism. Moreover, their magnetic properties significantly depend on the adsorbed elements and the adsorbent chalcogens. A maximal total magnetic moment of 6 µB is obtained in the Cr-adsorbed system. The induced magnetism from S-surface-adsorption is always stronger than that for the Se-surface-adsorption due to its larger electrostatic potential. Interestingly, the easy magnetization axis in the Fe-adsorbed system switches from the in-plane to the out-of-plane when the adsorption surface changes from Se to S surface. The mechanism is analyzed in detail by Fe-3d orbital-decomposed density of states. This work provides a guidance for the modification of magnetism in low-dimensional systems.

5.
J Phys Condens Matter ; 33(29)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34103456

RESUMO

Inspired by the profound physical connotations and potential applications of the spintronics and valleytronics, two-dimensional (2D) monolayer manganese chalcogenophosphates alloys are constructed, and the strain modulated spin-valley characteristics are investigated through the first principles calculations. For both the MnFePS3and MnFePSe3, the conductivity can be tuned reversibly between semiconductive and half-metallic, while and magnetic stability is controllable between ferromagnetism and antiferromagnetism. Large valley splitting of up to 1000 meV is achieved in MnFePS3under a -4% strain. Simultaneous spin splitting of 219 meV and valley splitting of 160 meV are acquired in MnFePS3under a 4% strain. Strain tunable magnetic moment and interaction between Mn, Fe and S/Se atoms are revealed as the internal mechanisms of controlling the magnetic stability, spin and valley polarizations in the two structures. All the findings in this work provide a strategy for the manipulation of spin and valley degrees of freedom in 2D magnetic materials.

6.
ACS Nano ; 15(5): 8244-8251, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33982558

RESUMO

Lifting the valley degeneracy in two-dimensional transition metal dichalcogenides could promote their applications in information processing. Various external regulations, including magnetic substrate, magnetic doping, electric field, and carrier doping, have been implemented to enhance the valley splitting under the magnetic field. Here, a phase engineering strategy, through modifying the intrinsic lattice structure, is proposed to enhance the valley splitting in monolayer WSe2. The valley splitting in hybrid H and T phase WSe2 is tunable by the concentration of the T phase. An obvious valley splitting of ∼4.1 meV is obtained with the T phase concentration of 31% under ±5 T magnetic fields, which corresponds to an effective Landé geff factor of -14, about 3.5-fold of that in pure H-WSe2. Comparing the temperature and magnetic field dependent polarized photoluminescence and also combining the theoretical simulations reveal the enhanced valley splitting is dominantly attributed to exchange interaction of H phase WSe2 with the local magnetic moments induced by the T phase. This finding provides a convenient solution for lifting the valley degeneracy of two-dimensional materials.

7.
Nanoscale Res Lett ; 15(1): 97, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32367196

RESUMO

Controllable optical properties are important for optoelectronic applications. Based on the unique properties and potential applications of two-dimensional Janus WSSe, we systematically investigate the strain-modulated electronic and optical properties of WSSe bilayer through the first-principle calculations. The preferred stacking configurations and chalcogen orders are determined by the binding energies. The bandgap of all the stable structures are found sensitive to the external stress and could be tailored from semiconductor to metallicity under appropriate compressive strains. Atomic orbital projected energy bands reveal a positive correlation between the degeneracy and the structural symmetry, which explains the bandgap evolutions. Dipole transition preference is tuned by the biaxial strain. A controllable transformation between anisotropic and isotropic optical properties is achieved under an around - 6%~- 4% critical strain. The strain controllable electronic and optical properties of the WSSe bilayer may open up an important path for exploring next-generation optoelectronic applications.

8.
ACS Appl Mater Interfaces ; 12(17): 19635-19642, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32255332

RESUMO

Monolayer two-dimensional transition-metal dichalcogenides, such as tungsten disulfide (WS2), are regarded as promising candidates for optoelectronic and electronic applications. Although theoretical calculations have predicted outstanding electronic properties of WS2, the performance of WS2-based electronic devices is still limited by the relatively high Schottky barrier and low carrier mobility. In this work, low-energy argon (Ar+) plasma treatment was used as a nondestructive preconditioning technique to tailor the electrical properties of the WS2 monolayer grown by chemical vapor deposition. Photoluminescence and Raman spectroscopy were used to monitor the modified optical properties of WS2 with increasing plasma treatment time. An improved electrical conductivity was observed after a short-time plasma treatment. The physical mechanism was further revealed by a comparative study between top-electrode and bottom-electrode devices and simulation based on the density functional theory. It is concluded that mild Ar+ plasma treatment can effectively lower the Schottky barrier height and the effective mass of carriers, which reduces the turn-on voltage and enhances the mobility, respectively. However, if the processing time is too long, the WS2 lattice structure will be destroyed. This work has provided an effective method for manipulating the Schottky barrier and mobility of monolayer WS2 transistors and paves the way for developing high-performance electronic devices based on 2D semiconductors.

9.
J Phys Condens Matter ; 32(27): 275001, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32155608

RESUMO

The design and manipulation of magnetism in low-dimensional systems are desirable for the development of spin electronic devices. Here, we design two kinds of Co-adsorbed monolayer WS2 frameworks, i.e. Co1/WS2 and Co2/WS2, and comprehensively explore the dependences of their magnetic properties on injected charge by using first-principles calculations. The value of magnetic moment can be tuned almost linearly through injecting charge due to the modulated interaction and charge transferring between Co atom and monolayer WS2. A transition from ferromagnetism to non-ferromagnetism occurs in Co1/WS2 system when 1 e/unit cell charge is injected. Furthermore, the magnetic anisotropy can be manipulated by injecting charge as well. The magnetic anisotropy energy (MAE) in Co1/WS2 system sharply increases from -4.16 to 2.47 (0.99) meV when injected charge vary from 0.0 to 0.2 (-0.2) e/unit cell, meaning a transition of the magnetic easy axis from in-plane to out-of-plane direction. Similarly, in Co2/WS2 system, the magnetic easy axis also can be modified to out-of-plane direction through injecting 0.1 e/unit cell charge. It is found that the changes of Co-3d states are responsible for the tunable magnetic anisotropy. This work provides a theoretical understanding on effective manipulation of magnetism in low-dimensional system.

10.
Nanoscale ; 12(6): 4069-4076, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32022060

RESUMO

We report tunable optical performances of gallium selenide (GaSe) layers in phonon vibrations, band edge emission, circular polarization, and anisotropic response via strain manipulation. By applying a uniaxial tensile strain, frequency shift and peak broadening are observed in Raman spectra. A shrink in bandgap is demonstrated in photoluminescence (PL) spectra and confirmed by first-principles calculations. A continuously growing circular polarization from 3.8% to 37.9% is detected at room temperature when the tensile strain is increased from 0% to 0.35%, which is almost a ten-fold enhancement compared with that under the non-resonant excitation. Through the theoretical calculations, the decrease in exciton lifetime is revealed to be responsible for the overwhelming enhanced circular polarization. By deforing the lattices of GaSe layers, the Raman intensity was found to be suppressed in the strain direction. The intrinsic fourfold-symmetry of the E2g1 mode in angle-dependent Raman spectra is tuned to a two-fold symmetry. An anisotropic PL response is further regulated by changing the structural symmetry of GaSe lattices. A maximal polarization of 66.0% is achieved when the detection polarizations are perpendicular to the strain direction. All the findings in this study suggest a route for tuning the optical properties, particularly the polarized response in two-dimensional (2D) materials, and provide a strategy for developing flexible and anisotropic 2D optical devices.

11.
Nanoscale Res Lett ; 12(1): 409, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28618718

RESUMO

We investigate the electric-field-dependent optical properties and electronic behaviors of GaS monolayer by using the first-principles calculations. A reversal of the dipole transition from E//c to E⊥c anisotropy is found with a critical external electric field of about 5 V/nm. Decomposed projected band contributions exhibit asymmetric electronic structures in GaS interlayers under the external electric field, which explains the evolution of the absorption preference. Spatial distribution of the partial charge and charge density difference reveal that the strikingly reversed optical anisotropy in GaS ML is closely linked to the additional crystal field originated from the external electric field. These results pave the way for experimental research and provide a new perspective for the application of the monolayer GaS-based two-dimensional electronic and optoelectronic devices.

12.
Nanoscale ; 8(2): 930-7, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26660490

RESUMO

During the chemical vapor deposition (CVD) growth of graphene on Cu foils, evaporation of Cu and changes in the dimensions of Cu grains in directions both parallel and perpendicular to the foils are induced by thermal effects. Such changes in the Cu foil could subsequently change the shape and distribution of individual graphene domains grown on the foil surface, and thus influence the domain structure and electrical properties of the resulting graphene films. Here, a slower cooling rate is used after the CVD process, and the graphene films are found to have an improved electrical performance, which is considered to be associated with the Cu surface evaporation and grain structure changes in the Cu substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA