Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(15): 8035-8047, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37526286

RESUMO

Obtaining sufficient genetic material from a limited biological source is currently the primary operational bottleneck in studies investigating biodiversity and genome evolution. In this study, we employed multiple displacement amplification (MDA) and Smartseq2 to amplify nanograms of genomic DNA and mRNA, respectively, from individual Caenorhabditis elegans. Although reduced genome coverage was observed in repetitive regions, we produced assemblies covering 98% of the reference genome using long-read sequences generated with Oxford Nanopore Technologies (ONT). Annotation with the sequenced transcriptome coupled with the available assembly revealed that gene predictions were more accurate, complete and contained far fewer false positives than de novo transcriptome assembly approaches. We sampled and sequenced the genomes and transcriptomes of 13 nematodes from early-branching species in Chromadoria, Dorylaimia and Enoplia. The basal Chromadoria and Enoplia species had larger genome sizes, ranging from 136.6 to 738.8 Mb, compared with those in the other clades. Nine mitogenomes were fully assembled, and displayed a complete lack of synteny to other species. Phylogenomic analyses based on the new annotations revealed strong support for Enoplia as sister to the rest of Nematoda. Our result demonstrates the robustness of MDA in combination with ONT, paving the way for the study of genome diversity in the phylum Nematoda and beyond.


Assuntos
Caenorhabditis elegans , Genoma , Animais , Caenorhabditis elegans/genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Análise de Sequência de DNA
2.
Nat Microbiol ; 8(9): 1668-1681, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550506

RESUMO

The fungal genus Armillaria contains necrotrophic pathogens and some of the largest terrestrial organisms that cause tremendous losses in diverse ecosystems, yet how they evolved pathogenicity in a clade of dominantly non-pathogenic wood degraders remains elusive. Here we show that Armillaria species, in addition to gene duplications and de novo gene origins, acquired at least 1,025 genes via 124 horizontal gene transfer events, primarily from Ascomycota. Horizontal gene transfer might have affected plant biomass degrading and virulence abilities of Armillaria, and provides an explanation for their unusual, soft rot-like wood decay strategy. Combined multi-species expression data revealed extensive regulation of horizontally acquired and wood-decay related genes, putative virulence factors and two novel conserved pathogenicity-induced small secreted proteins, which induced necrosis in planta. Overall, this study details how evolution knitted together horizontally and vertically inherited genes in complex adaptive traits of plant biomass degradation and pathogenicity in important fungal pathogens.


Assuntos
Armillaria , Armillaria/genética , Armillaria/metabolismo , Biomassa , Transferência Genética Horizontal , Ecossistema , Plantas
3.
Nucleic Acids Res ; 51(15): 7777-7797, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37497782

RESUMO

Trans-spliced RNAs (ts-RNAs) are a type of non-co-linear (NCL) transcripts that consist of exons in an order topologically inconsistent with the corresponding DNA template. Detecting ts-RNAs is often interfered by experimental artifacts, circular RNAs (circRNAs) and genetic rearrangements. Particularly, intragenic ts-RNAs, which are derived from separate precursor mRNA molecules of the same gene, are often mistaken for circRNAs through analyses of RNA-seq data. Here we developed a bioinformatics pipeline (NCLscan-hybrid), which integrated short and long RNA-seq reads to minimize false positives and proposed out-of-circle and rolling-circle long reads to distinguish between intragenic ts-RNAs and circRNAs. Combining NCLscan-hybrid screening and multiple experimental validation steps successfully confirmed that four NCL events, which were previously regarded as circRNAs in databases, originated from trans-splicing. CRISPR-based endogenous genome modification experiments further showed that flanking intronic complementary sequences can significantly contribute to ts-RNA formation, providing an efficient/specific method to deplete ts-RNAs. We also experimentally validated that one ts-RNA (ts-ARFGEF1) played an important role for p53-mediated apoptosis through affecting the PERK/eIF2a/ATF4/CHOP signaling pathway in breast cancer cells. This study thus described both bioinformatics procedures and experimental validation steps for rigorous characterization of ts-RNAs, expanding future studies for identification, biogenesis, and function of these important but understudied transcripts.


Assuntos
Análise de Sequência de RNA , Trans-Splicing , Genoma , Splicing de RNA , RNA Circular , Análise de Sequência de RNA/métodos
4.
Mol Ecol Resour ; 23(4): 905-919, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36597348

RESUMO

Aphelenchoides besseyi is a plant-parasitic nematode (PPN) in the family Aphelenchoididae capable of infecting more than 200 plant species. A. besseyi is also a species complex with strains exhibiting varying pathogenicity to plants. We present the genome and annotations of six Aphelenchoides species, four of which belonged to the A. besseyi species complex. Most Aphelenchoides genomes have a size of 44.7-47.4 Mb and are among the smallest in clade IV, with the exception of A. fujianensis, which has a size of 143.8 Mb and is one of the largest. Phylogenomic analysis successfully delimited the species complex into A. oryzae and A. pseudobesseyi and revealed a reduction of transposon elements in the last common ancestor of Aphelenchoides. Synteny analyses between reference genomes indicated that three chromosomes in A. besseyi were derived from fission and fusion events. A systematic identification of horizontal gene transfer (HGT) genes across 27 representative nematodes allowed us to identify two major episodes of acquisition corresponding to the last common ancestor of clade IV or major PPNs, respectively. These genes were mostly lost and differentially retained between clades or strains. Most HGT events were acquired from bacteria, followed by fungi, and also from plants; plant HGT was especially prevalent in Bursaphelenchus mucronatus. Our results comprehensively improve the understanding of HGT in nematodes.


Assuntos
Transferência Genética Horizontal , Nematoides , Animais , Nematoides/genética , Filogenia , Plantas/genética , Plantas/parasitologia
5.
BMC Biol ; 20(1): 236, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266645

RESUMO

BACKGROUND: The Fusarium solani species complex (FSSC) comprises fungal pathogens responsible for mortality in a diverse range of animals and plants, but their genome diversity and transcriptome responses in animal pathogenicity remain to be elucidated. We sequenced, assembled and annotated six chromosome-level FSSC clade 3 genomes of aquatic animal and plant host origins. We established a pathosystem and investigated the expression data of F. falciforme and F. keratoplasticum in Chinese softshell turtle (Pelodiscus sinensis) host. RESULTS: Comparative analyses between the FSSC genomes revealed a spectrum of conservation patterns in chromosomes categorised into three compartments: core, fast-core (FC), and lineage-specific (LS). LS chromosomes contribute to variations in genomes size, with up to 42.2% of variations between F. vanettenii strains. Each chromosome compartment varied in structural architectures, with FC and LS chromosomes contain higher proportions of repetitive elements with genes enriched in functions related to pathogenicity and niche expansion. We identified differences in both selection in the coding sequences and DNA methylation levels between genome features and chromosome compartments which suggest a multi-speed evolution that can be traced back to the last common ancestor of Fusarium. We further demonstrated that F. falciforme and F. keratoplasticum are opportunistic pathogens by inoculating P. sinensis eggs and identified differentially expressed genes also associated with plant pathogenicity. These included the most upregulated genes encoding the CFEM (Common in Fungal Extracellular Membrane) domain. CONCLUSIONS: The high-quality genome assemblies provided new insights into the evolution of FSSC chromosomes, which also serve as a resource for studies of fungal genome evolution and pathogenesis. This study also establishes an animal model for fungal pathogens of trans-kingdom hosts.


Assuntos
Fusarium , Animais , Fusarium/genética , Transcriptoma , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Filogenia , Genômica , Plantas/genética
6.
Genome Biol Evol ; 14(6)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35640266

RESUMO

The mandarin duck, Aix galericulata, is popular in East Asian cultures and displays exaggerated sexual dimorphism, especially in feather traits during breeding seasons. We generated and annotated the first mandarin duck de novo assembly, which was 1.08 Gb in size and encoded 16,615 proteins. Using a phylogenomic approach calibrated with fossils and molecular divergences, we inferred that the last common ancestor of ducks occurred 13.3-26.7 Ma. The majority of the mandarin duck genome repetitive sequences belonged to the chicken repeat 1 (CR1) retroposon CR1-J2_Pass, which underwent a duck lineage-specific burst. Synteny analyses among ducks revealed infrequent chromosomal rearrangements in which breaks were enriched in LINE retrotransposons and DNA transposons. The calculation of the dN/dS ratio revealed that the majority of duck genes were under strong purifying selection. The expanded gene families in the mandarin duck are primarily involved in olfactory perception as well as the development and morphogenesis of feather and branching structures. This new reference genome will improve our understanding of the morphological and physiological characteristics of ducks and provide a valuable resource for functional genomics studies to investigate the feather traits of the mandarin duck.


Assuntos
Patos , Genoma , Animais , Patos/genética , Plumas , Genômica , Sintenia
7.
Genome Res ; 32(5): 864-877, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35361625

RESUMO

The ecology and genetic diversity of the model yeast Saccharomyces cerevisiae before human domestication remain poorly understood. Taiwan is regarded as part of this yeast's geographic birthplace, where the most divergent natural lineage was discovered. Here, we extensively sampled the broadleaf forests across this continental island to probe the ancestral species' diversity. We found that S. cerevisiae is distributed ubiquitously at low abundance in the forests. Whole-genome sequencing of 121 isolates revealed nine distinct lineages that diverged from Asian lineages during the Pleistocene, when a transient continental shelf land bridge connected Taiwan to other major landmasses. Three lineages are endemic to Taiwan and six are widespread in Asia, making this region a focal biodiversity hotspot. Both ancient and recent admixture events were detected between the natural lineages, and a genetic ancestry component associated with isolates from fruits was detected in most admixed isolates. Collectively, Taiwanese isolates harbor genetic diversity comparable to that of the whole Asia continent, and different lineages have coexisted at a fine spatial scale even on the same tree. Patterns of variations within each lineage revealed that S. cerevisiae is highly clonal and predominantly reproduces asexually in nature. We identified different selection patterns shaping the coding sequences of natural lineages and found fewer gene family expansion and contractions that contrast with domesticated lineages. This study establishes that S. cerevisiae has rich natural diversity sheltered from human influences, making it a powerful model system in microbial ecology.


Assuntos
Biodiversidade , Saccharomyces cerevisiae , Ásia , Humanos , Filogenia , Saccharomyces cerevisiae/genética , Taiwan , Sequenciamento Completo do Genoma
8.
Gut Microbes ; 13(1): 1-10, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33525983

RESUMO

Ulcerative colitis (UC), a subtype of inflammatory bowel disease, is characterized by repetitive remission and relapse. Gut microbiome is critically involved in pathogenesis of UC. The shifts in microbiome profile during disease remission remain under-investigated. Recent studies revealed that UC pathogenesis is likely to originate in the mucosal barrier. Therefore, we investigated the effectiveness of mucosal tissue microbiomes to differentiate patients with subclinical UC from healthy individuals. The microbiomes of cecal and rectal biopsies and feces were characterized from 13 healthy individuals and 45 patients with subclinical UC. Total genomic DNA was extracted from the samples, and their microbial communities determined using next-generation sequencing. We found that changes in relative abundance of subclinical UC were marked by a decrease in Proteobacteria and an increase in Bacteroidetes phyla in microbiome derived from rectal tissues but not cecal tissue nor feces. Only in the microbiome of rectal tissue had significantly higher community richness and evenness in subclinical UC patients than controls. Twenty-seven operational taxonomic units were enriched in subclinical UC cohort with majority of the taxa from the Firmicutes phylum. Inference of putative microbial functional pathways from rectal biopsy microbiome suggested a differential increase in interleukin-17 signaling and T-helper cell differentiation pathways. Rectal biopsy tissue was suggested to be more suitable than fecal samples for microbiome assays to distinguish patients with subclinical UC from healthy adults. Assessment of the rectal biopsy microbiome may offer clinical insight into UC disease progression and predict relapse of the diseases.


Assuntos
Colite Ulcerativa/microbiologia , Mucosa Intestinal/microbiologia , Reto/microbiologia , Adulto , Ceco/microbiologia , Ceco/patologia , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/patologia , Disbiose/microbiologia , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Humanos , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade , Reto/patologia
9.
Proc Natl Acad Sci U S A ; 117(49): 31267-31277, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229585

RESUMO

Mushroom-forming fungi in the order Agaricales represent an independent origin of bioluminescence in the tree of life; yet the diversity, evolutionary history, and timing of the origin of fungal luciferases remain elusive. We sequenced the genomes and transcriptomes of five bonnet mushroom species (Mycena spp.), a diverse lineage comprising the majority of bioluminescent fungi. Two species with haploid genome assemblies ∼150 Mb are among the largest in Agaricales, and we found that a variety of repeats between Mycena species were differentially mediated by DNA methylation. We show that bioluminescence evolved in the last common ancestor of mycenoid and the marasmioid clade of Agaricales and was maintained through at least 160 million years of evolution. Analyses of synteny across genomes of bioluminescent species resolved how the luciferase cluster was derived by duplication and translocation, frequently rearranged and lost in most Mycena species, but conserved in the Armillaria lineage. Luciferase cluster members were coexpressed across developmental stages, with the highest expression in fruiting body caps and stipes, suggesting fruiting-related adaptive functions. Our results contribute to understanding a de novo origin of bioluminescence and the corresponding gene cluster in a diverse group of enigmatic fungal species.


Assuntos
Agaricales/genética , Evolução Molecular , Carpóforos/genética , Luminescência , Agaricales/química , Sequência de Bases , Carpóforos/química , Genoma Fúngico/genética , Luciferases/genética , Filogenia
10.
Genome Biol Evol ; 11(10): 2774-2788, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31418013

RESUMO

Comparative genomics of fungal mitochondrial genomes (mitogenomes) have revealed a remarkable pattern of rearrangement between and within major phyla owing to horizontal gene transfer and recombination. The role of recombination was exemplified at a finer evolutionary time scale in basidiomycetes group of fungi as they display a diversity of mitochondrial DNA inheritance patterns. Here, we assembled mitogenomes of six species from the Hymenochaetales order of basidiomycetes and examined 59 mitogenomes from 2 genetic lineages of Phellinus noxius. Gene order is largely collinear, while intergene regions are major determinants of mitogenome size variation. Substantial sequence divergence was found in shared introns consistent with high horizontal gene transfer frequency observed in yeasts, but we also identified a rare case where an intron was retained in five species since speciation. In contrast to the hyperdiversity observed in nuclear genomes of Phellinus noxius, mitogenomes' intraspecific polymorphisms at protein-coding sequences are extremely low. Phylogeny network based on introns revealed turnover as well as exchange of introns between two lineages. Strikingly, some strains harbor a mosaic origin of introns from both lineages. Analysis of intergenic sequence indicated substantial differences between and within lineages, and an expansion may be ongoing as a result of exchange between distal intergenes. These findings suggest that the evolution in mitochondrial DNAs is usually lineage specific but chimeric mitotypes are frequently observed, thus capturing the possible evolutionary processes shaping mitogenomes in a basidiomycete. The large mitogenome sizes reported in various basidiomycetes appear to be a result of interspecific reshuffling of intergenes.


Assuntos
Basidiomycota/genética , Evolução Molecular , Genoma Fúngico , Genoma Mitocondrial , Tamanho do Genoma , Íntrons , Anotação de Sequência Molecular , Polimorfismo Genético , Sintenia
11.
Cell Mol Gastroenterol Hepatol ; 8(2): 301-318.e2, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31004827

RESUMO

BACKGROUND & AIMS: Gut dysbiosis plays a role in hepatic encephalopathy (HE), while its relationship at the acute episode of overt HE (AHE), the disease progression and clinical outcomes remains unclear. We aimed to identify AHE-specific microbiome and its association to patients' outcomes. METHODS: We profiled fecal microbiome changes for a cohort of 62 patients with cirrhosis and AHE i) before treatment, ii) 2-3 days after medication and iii) 2-3 months after recovery, and three control cohorts i) healthy individuals, patients with ii) compensated or iii) decompensated cirrhosis. RESULTS: Comparison of the microbiome shift from compensated, decompensated cirrhosis, AHE to recovery revealed the AHE-specific gut-dysbiosis. The gut microbiome diversity was decreased during AHE, further reduced after medication, and only partially reversed during the recovery. The relative abundance of Bacteroidetes phylum in the microbiome decreased, whereas that of Firmicute, Proteobacteria and Actinobacteria increased in patients during AHE compared with those with compensated cirrhosis. A total of 70 operational taxonomic units (OTUs) were significantly different between AHE and decompensated cirrhosis abundances. Of them, the abundance of Veillonella parvula increased the most during AHE via a metagenomics recovery of the genomes. Moreover, the relative abundances of three (Alistipes, Bacteroides, Phascolarctobacterium) and five OTUs (Clostridium-XI, Bacteroides, Bacteroides, Lactobacillus, Clostridium-sedis) at AHE were respectively associated with HE recurrence and overall survival during the subsequent one-year follow-up. CONCLUSIONS: AHE-specific gut OTUs were identified that may be involved in HE development and able to predict clinical outcomes, providing new strategies for the prevention and treatment of HE recurrence in patients with cirrhosis.


Assuntos
Bactérias/isolamento & purificação , Disbiose , Microbioma Gastrointestinal , Encefalopatia Hepática/diagnóstico , Cirrose Hepática , Adulto , Idoso , Fezes/microbiologia , Feminino , Encefalopatia Hepática/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
12.
Nat Plants ; 5(1): 63-73, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626928

RESUMO

We present reference-quality genome assembly and annotation for the stout camphor tree (Cinnamomum kanehirae (Laurales, Lauraceae)), the first sequenced member of the Magnoliidae comprising four orders (Laurales, Magnoliales, Canellales and Piperales) and over 9,000 species. Phylogenomic analysis of 13 representative seed plant genomes indicates that magnoliid and eudicot lineages share more recent common ancestry than monocots. Two whole-genome duplication events were inferred within the magnoliid lineage: one before divergence of Laurales and Magnoliales and the other within the Lauraceae. Small-scale segmental duplications and tandem duplications also contributed to innovation in the evolutionary history of Cinnamomum. For example, expansion of the terpenoid synthase gene subfamilies within the Laurales spawned the diversity of Cinnamomum monoterpenes and sesquiterpenes.


Assuntos
Cinnamomum camphora/genética , Evolução Molecular , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Alquil e Aril Transferases/genética , Elementos de DNA Transponíveis , Magnoliopsida/genética , Anotação de Sequência Molecular , Família Multigênica , Polimorfismo de Nucleotídeo Único , Sintenia
13.
Nat Commun ; 9(1): 3216, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097582

RESUMO

A 'sibling' species of the model organism Caenorhabditis elegans has long been sought for use in comparative analyses that would enable deep evolutionary interpretations of biological phenomena. Here, we describe the first sibling species of C. elegans, C. inopinata n. sp., isolated from fig syconia in Okinawa, Japan. We investigate the morphology, developmental processes and behaviour of C. inopinata, which differ significantly from those of C. elegans. The 123-Mb C. inopinata genome was sequenced and assembled into six nuclear chromosomes, allowing delineation of Caenorhabditis genome evolution and revealing unique characteristics, such as highly expanded transposable elements that might have contributed to the genome evolution of C. inopinata. In addition, C. inopinata exhibits massive gene losses in chemoreceptor gene families, which could be correlated with its limited habitat area. We have developed genetic and molecular techniques for C. inopinata; thus C. inopinata provides an exciting new platform for comparative evolutionary studies.


Assuntos
Caenorhabditis elegans/genética , Genoma , Sequência de Aminoácidos , Animais , Sequência de Bases , Caenorhabditis elegans/anatomia & histologia , Células Quimiorreceptoras/metabolismo , Sequência Conservada/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Feminino , Variação Genética , Masculino , Família Multigênica , Interferência de RNA , Sequências Reguladoras de Ácido Nucleico/genética , Especificidade da Espécie
14.
Biotechnol Biofuels ; 11: 157, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29930703

RESUMO

BACKGROUND: Enzymatic conversion of lignocellulosic biomass into soluble sugars is a major bottleneck in the plant biomass utilization. Several anaerobic organisms cope these issues via multiple-enzyme complex system so called 'cellulosome'. Hence, we proposed a "biomimic operon" concept for making an artificial cellulosome which can be used as a promising tool for the expression of cellulosomal enzymes in Bacillus subtilis. RESULTS: According to the proteomic analysis of Clostridium thermocellum ATCC27405 induced by Avicel or cellobiose, we selected eight highly expressed cellulosomal genes including a scaffoldin protein gene (cipA), a cell-surface anchor gene (sdbA), two exoglucanase genes (celK and celS), two endoglucanase genes (celA and celR), and two xylanase genes (xynC and xynZ). Arranging these eight genes in two different orders, we constructed two different polycistronic operons using the ordered gene assembly in Bacillus method. This is the first study to express the whole CipA along with cellulolytic enzymes in B. subtilis. Each operon was successfully expressed in B. subtilis RM125, and the protein complex assembly, cellulose-binding ability, thermostability, and cellulolytic activity were demonstrated. The operon with a higher xylanase activity showed greater saccharification on complex cellulosic substrates such as Napier grass than the other operon. CONCLUSIONS: In this study, a strategy for constructing an efficient cellulosome system was developed and two different artificial cellulosomal operons were constructed. Both operons could efficiently express the cellulosomal enzymes and exhibited cellulose saccharification. This strategy can be applied to different industries with cellulose-containing materials, such as papermaking, biofuel, agricultural compost, mushroom cultivation, and waste processing industries.

15.
Sci Rep ; 8(1): 7305, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743485

RESUMO

Kluyveromyces marxianus, a probiotic yeast, is important in industrial applications because it has a broad substrate spectrum, a rapid growth rate and high thermotolerance. To date, however, there has been little effort in its genetic engineering by the CRISPR/Cas9 system. Therefore, we aimed at establishing the CRISPR/Cas9 system in K. marxianus and creating stable haploid strains, which will make genome engineering simpler. First, we predicted the genome-wide target sites of CRISPR/Cas9 that have been conserved among the eight sequenced genomes of K. marxianus strains. Second, we established the CRISPR/Cas9 system in the K. marxianus 4G5 strain, which was selected for its high thermotolerance, rapid growth, a pH range of pH3-9, utilization of xylose, cellobiose and glycerol, and toxin tolerance, and we knocked out its MATα3 to prevent mating-type switching. Finally, we used K. marxianus MATα3 knockout diploid strains to obtain stable haploid strains with a growth rate comparable to that of the diploid 4G5 strain. In summary, we present the workflow from identifying conserved CRISPR/Cas9 targets in the genome to knock out the MATα3 genes in K. marxianus to obtain a stable haploid strain, which can facilitate genome engineering applications.


Assuntos
Sistemas CRISPR-Cas/genética , Genômica , Haploidia , Kluyveromyces/genética , Sequência Conservada , Técnicas de Inativação de Genes , Kluyveromyces/fisiologia , Esporos Fúngicos/fisiologia , Transformação Genética
16.
J Bacteriol ; 200(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29555692

RESUMO

The mechanism of bacterial speciation remains a topic of tremendous interest. To understand the ecological and evolutionary mechanisms of speciation in Vibrio bacteria, we analyzed the genomic dissimilarities between three closely related species in the so-called Harveyi clade of the genus Vibrio, V. campbellii, V. jasicida, and V. hyugaensis The analysis focused on strains isolated from diverse geographic locations over a long period of time. The results of phylogenetic analyses and calculations of average nucleotide identity (ANI) supported the classification of V. jasicida and V. hyugaensis into two species. These analyses also identified two well-supported clades in V. campbellii; however, strains from both clades were classified as members of the same species. Comparative analyses of the complete genome sequences of representative strains from the three species identified higher syntenic coverage between genomes of V. jasicida and V. hyugaensis than that between the genomes from the two V. campbellii clades. The results from comparative analyses of gene content between bacteria from the three species did not support the hypothesis that gene gain and/or loss contributed to their speciation. We also did not find support for the hypothesis that ecological diversification toward associations with marine animals contributed to the speciation of V. jasicida and V. hyugaensis Overall, based on the results obtained in this study, we propose that speciation in Harveyi clade species is a result of stochastic diversification of local populations, which was influenced by multiple evolutionary processes, followed by extinction events.IMPORTANCE To investigate the mechanisms underlying speciation in the genus Vibrio, we provided a well-assembled reference of genomes and performed systematic genomic comparisons among three evolutionarily closely related species. We resolved taxonomic ambiguities and identified genomic features separating the three species. Based on the study results, we propose a hypothesis explaining how species in the Harveyi clade of Vibrio bacteria diversified.


Assuntos
DNA Bacteriano/genética , Variação Genética , Genoma Bacteriano , Genômica , Vibrio/genética , Evolução Molecular , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
17.
Evol Bioinform Online ; 13: 1176934317724404, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104426

RESUMO

As phylogenomic approach becomes a common practice for constructing true bacterial phylogenies, it has become apparent that single molecular markers such as 16S ribosomal DNA often lead to misclassification of species. In this study, we present a program called Popmarker that uses the true species phylogeny and identifies a minimum set of molecular markers reflecting the bacterial evolution history and phylogenetic relationship at the resolution of populations. Popmarker ranks the proteome according to the correlation of whole species tree or subtree branch length against orthologous sequence distances. We demonstrate that 5 proteins of 2 top ranks achieve the same resolution as concatenation of 2203 single-copy orthologous genes and the right species classification as well as correct split of the 2 groups of Vibrio campbellii . The top-ranking genes selected by Popmarker are candidates that lead to speciation and are useful in distinguishing close related species in microbiome study.

18.
Mol Ecol ; 26(22): 6301-6316, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28926153

RESUMO

The order Hymenochaetales of white rot fungi contain some of the most aggressive wood decayers causing tree deaths around the world. Despite their ecological importance and the impact of diseases they cause, little is known about the evolution and transmission patterns of these pathogens. Here, we sequenced and undertook comparative genomic analyses of Hymenochaetales genomes using brown root rot fungus Phellinus noxius, wood-decomposing fungus Phellinus lamaensis, laminated root rot fungus Phellinus sulphurascens and trunk pathogen Porodaedalea pini. Many gene families of lignin-degrading enzymes were identified from these fungi, reflecting their ability as white rot fungi. Comparing against distant fungi highlighted the expansion of 1,3-beta-glucan synthases in P. noxius, which may account for its fast-growing attribute. We identified 13 linkage groups conserved within Agaricomycetes, suggesting the evolution of stable karyotypes. We determined that P. noxius has a bipolar heterothallic mating system, with unusual highly expanded ~60 kb A locus as a result of accumulating gene transposition. We investigated the population genomics of 60 P. noxius isolates across multiple islands of the Asia Pacific region. Whole-genome sequencing showed this multinucleate species contains abundant poly-allelic single nucleotide polymorphisms with atypical allele frequencies. Different patterns of intra-isolate polymorphism reflect mono-/heterokaryotic states which are both prevalent in nature. We have shown two genetically separated lineages with one spanning across many islands despite the geographical barriers. Both populations possess extraordinary genetic diversity and show contrasting evolutionary scenarios. These results provide a framework to further investigate the genetic basis underlying the fitness and virulence of white rot fungi.


Assuntos
Basidiomycota/genética , Genética Populacional , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Frequência do Gene , Ligação Genética , Genoma Fúngico , Cariótipo , Família Multigênica , Polimorfismo de Nucleotídeo Único , Árvores/microbiologia , Madeira/microbiologia
19.
Sci Rep ; 7: 41394, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145490

RESUMO

The core of the Vibrio Harveyi clade contains V. harveyi, V. campbellii, V. owensii, V. jasicida, and V. rotiferianus. They are well recognized aquatic animal pathogens, but misclassification has been common due to similarities in their rDNA sequences and phenotypes. To better understand their evolutionary relationships and functional features, we sequenced a shrimp pathogen strain V. harveyi 1114GL, reclassified it as V. campbellii and compared this and 47 other sequenced Vibrio genomes in the Harveryi clade. A phylogeny based on 1,775 genes revealed that both V. owensii and V. jasicida were closer to V. campbellii than to V. harveyi and that V. campbellii strains can be divided into two distinct groups. Species-specific genes such as intimin and iron acquisition genes were identified in V. campbellii. In particular, the 1114GL strain contains two bacterial immunoglobulin-like genes for cell adhesion with 22 Big_2 domains that have been extensively reshuffled and are by far the most expanded among all species surveyed in this study. The 1114GL strain differed from ATCC BAA-1116 by ~9% at the synonymous sites, indicating high diversity within V. campbellii. Our study revealed the characteristics of V. campbellii in the Harveyi clade and the genetic basis for their wide-spread pathogenicity.


Assuntos
Genoma Bacteriano , Genômica , Filogenia , Vibrio/genética , Sequência de Bases , Elementos de DNA Transponíveis/genética , Dosagem de Genes , Genes Bacterianos , Seleção Genética , Análise de Sequência de DNA , Especificidade da Espécie , Sintenia/genética
20.
Microb Ecol ; 72(3): 669-81, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27461253

RESUMO

Pine wilt disease (PWD) results from the interaction of three elements: the pathogenic nematode, Bursaphelenchus xylophilus; the insect-vector, Monochamus sp.; and the host tree, mostly Pinus species. Bacteria isolated from B. xylophilus may be a fourth element in this complex disease. However, the precise role of bacteria in this interaction is unclear as both plant-beneficial and as plant-pathogenic bacteria may be associated with PWD. Using whole genome sequencing and phenotypic characterization, we were able to investigate in more detail the genetic repertoire of Serratia marcescens PWN146, a bacterium associated with B. xylophilus. We show clear evidence that S. marcescens PWN146 is able to withstand and colonize the plant environment, without having any deleterious effects towards a susceptible host (Pinus thunbergii), B. xylophilus nor to the nematode model C. elegans. This bacterium is able to tolerate growth in presence of xenobiotic/organic compounds, and use phenylacetic acid as carbon source. Furthermore, we present a detailed list of S. marcescens PWN146 potentials to interfere with plant metabolism via hormonal pathways and/or nutritional acquisition, and to be competitive against other bacteria and/or fungi in terms of resource acquisition or production of antimicrobial compounds. Further investigation is required to understand the role of bacteria in PWD. We have now reinforced the theory that B. xylophilus-associated bacteria may have a plant origin.


Assuntos
Endófitos , Estilo de Vida , Infecções Oportunistas , Pinus/microbiologia , Serratia marcescens/isolamento & purificação , Serratia marcescens/fisiologia , Serratia marcescens/patogenicidade , Tylenchida/microbiologia , Animais , Anti-Infecciosos , Antinematódeos/farmacologia , Sequência de Bases , Classificação , Besouros/microbiologia , DNA Bacteriano , Genes Bacterianos , Interações Hospedeiro-Parasita/fisiologia , Insetos Vetores/microbiologia , Microscopia Confocal , Microscopia Eletrônica de Varredura , Anotação de Sequência Molecular , Nematoides/patogenicidade , Filogenia , Pinus/parasitologia , Doenças das Plantas/microbiologia , Serratia marcescens/genética , Árvores/microbiologia , Árvores/parasitologia , Tylenchida/efeitos dos fármacos , Tylenchida/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA