Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(40): 27017-27026, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37789808

RESUMO

Stacking and/or substitutional doping are effective strategies to tune two-dimensional materials with desired properties, greatly extending the applications of the pristine materials. Here, by employing first-principles calculations, we propose that a pristine MoTe2/ZrS2 heterostructure is a distinguished lithium-ion battery anode material with a low Li diffusion barrier (∼0.26 eV), and it has a high maximum Li storage capacity (476.36 mA h g-1) and a relatively low open-circuit voltage (0.16 V) at Li4/MoTe2/Li/ZrS2/Li4. The other heterostructures with different types can be achieved by substitutional doping and their potential applications in sustainable energy related areas are further unraveled. For instance, a type-II TeMoSe/ZrS2 heterostructure could be a potential direct Z-scheme photocatalyst for water splitting with a high solar-to-hydrogen conversion efficiency of 17.62%. The TeMoSe/SZrO heterostructure is predicted to be a potential candidate for application in highly efficient solar cells. Its maximum power conversion efficiency can be as high as 19.21%, which is quite promising for commercial applications. The present results will shed light on the sustainable energy applications of pristine or doped MoTe2/ZrS2 heterostructures in the future.

2.
RSC Adv ; 12(3): 1653-1662, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35425166

RESUMO

Prior experimental work showed that Bi2Se3, as a sister compound of the best room-temperature thermoelectric material Bi2Te3, has remarkably improved thermoelectric performance by Sb-Br codoping. But the relationship between its crystalline structure and thermoelectric properties is still unclear to date. Here, we use first-principles calculations to explore the possible reasons for such improvement. The electronic structures of Bi2-x Sb x (Se1-y Br y )3 (x = 0, 1, 2; y = 0, 0.08) are systematically investigated. Significant effects of 8% Br codoping in BiSbSe3 are found. First, the Br atom acts as an electron donor, thus greatly increasing the carrier concentration. Second, similar to the effect of Sb doping, Br codoping further improves greatly the degeneracy of the conduction band edge, which leads to a remarkably increased density-of-states effective mass without deterioration of the carrier mobility, and simultaneously preserves a large Seebeck coefficient of ∼-254 µV K-1 at 800 K. In addition, the Br codoping softens the chemical bonds, which enhances anharmonic scattering and further reduces the lattice thermal conductivity. We predict that the maximum zT of BiSb(Se0.92Br0.08)3 at 800 K can reach 0.96 with the carrier concentration of 9.22 × 1019 cm-3. This study rationalizes a potential strategy to improve the thermoelectric performance of Bi2Se3-based thermoelectric materials.

3.
Sci Rep ; 9(1): 17632, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772263

RESUMO

The newly synthesized LN-type ZnTiO3 (J. Am. Chem. Soc. 2014, 136, 2748) contains cations with the electronic configurations nd10 (Zn2+: 3d10) along with second-order Jahn-Teller (SOJT) nd0 (Ti4+: 3d0) cations. This is different from traditional ferroelectrics with the electric configurations of d0 transition metal ions or/and lone pair electrons of ns2. Using a first-principles approach based on density functional theory, we investigate the electronic structure, zone-center phonon modes, piezoelectric and nonlinear optical properties of the LiNbO3-type ZnTiO3. The electronic structure indicates that this compound is a wide direct-band-gap insulator. The results reveal that this compound is a good ferroelectric material with a large spontaneous polarization of 90.43µC/cm2. The Raman scattering peaks of A1 and E modes are assigned to their zone-center optical modes. Additionally, the large piezoelectric and nonlinear optical susceptibilities reveal that LiNbO3-type ZnTiO3 is a high-performance lead-free piezoelectric and nonlinear optical crystal.

4.
Nanoscale Res Lett ; 13(1): 300, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30259233

RESUMO

Recently, GaTe and C2N monolayers have been successfully synthesized and show fascinating electronic and optical properties. Such hybrid of GaTe with C2N may induce new novel physical properties. In this work, we perform ab initio simulations on the structural, electronic, and optical properties of the GaTe/C2N van der Waals (vdW) heterostructure. Our calculations show that the GaTe/C2N vdW heterostructure is an indirect-gap semiconductor with type-II band alignment, facilitating an effective separation of photogenerated carriers. Intriguingly, it also presents enhanced visible-UV light absorption compared to its components and can be tailored to be a good photocatalyst for water splitting at certain pH by applying vertical strains. Further, we explore specifically the adsorption and decomposition of water molecules on the surface of C2N layer in the heterostructure and the subsequent formation of hydrogen, which reveals the mechanism of photocatalytic hydrogen production on the 2D GaTe/C2N heterostructure. Moreover, it is found that in-plane biaxial strains can induce indirect-direct-indirect, semiconductor-metal, and type II to type I or type III transitions. These interesting results make the GaTe/C2N vdW heterostructure a promising candidate for applications in next generation of multifunctional optoelectronic devices.

5.
Sci Rep ; 7(1): 5366, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710375

RESUMO

Electric-field-induced magnetic switching can lead to a new paradigm of ultra-low power nonvolatile magnetoelectric random access memory (MeRAM). To date the realization of MeRAM relies primarily on ferromagnetic (FM) based heterostructures which exhibit low voltage-controlled magnetic anisotropy (VCMA) efficiency. On the other hand, manipulation of magnetism in antiferromagnetic (AFM) based nanojunctions by purely electric field means (rather than E-field induced strain) remains unexplored thus far. Ab initio electronic structure calculations reveal that the VCMA of ultrathin FeRh/MgO bilayers exhibits distinct linear or nonlinear behavior across the AFM to FM metamagnetic transition depending on the Fe- or Rh-interface termination. We predict that the AFM Fe-terminated phase undergoes an E-field magnetization switching with large VCMA efficiency and a spin reorientation across the metamagnetic transition. In sharp contrast, while the Rh-terminated interface exhibits large out-of-plane (in-plane) MA in the FM (AFM) phase, its magnetization is more rigid to external E-field. These findings demonstrate that manipulation of the AFM Néel-order magnetization direction via purely E-field means can pave the way toward ultra-low energy AFM-based MeRAM devices.

6.
Opt Express ; 24(26): A1612-A1617, 2016 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-28059318

RESUMO

SrTcO3 as a new star of solar energy material is investigated in terms of its band gap evolution with biaxial strain from first-principles calculations. Compared to the theoretical equilibrium lattice constant a(b) of bulk SrTcO3, a set of lattice constants with a deviation of -8.75% to +3.35% are considered to include the strain effect. Since the in-plane lattice constant of SrTcO3 is larger than that of the commonly used substrate SrTiO3(STO)/La0.3Sr0.7Al0.35Ta0.35O9 (LSAT)/NdGaO3(NGO)/LaAlO3(LAO), we mainly focus on the modulation of compressive strain. It is found that the band gap decreases with increasing compressive/tensile strain. When the compressive strain reaches 8.75%, the band gap drops to zero and an insulator-metal phase transition appears. Particularly, upon a compressive strain of 1.3%/2.2%/2.4%/4.1%, which can be realized by growing SrTcO3 on substrate STO/LSAT/NGO/LAO, the band gap becomes 1.56/1.47/1.43/1.12 eV, which falls in the range for efficient solar cell materials. Our work suggests that SrTcO3 is a good candidate for a new solar energy material.

7.
J Chem Phys ; 137(10): 104107, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22979850

RESUMO

Motivated by recent experiments of successfully carving out stable carbon atomic chains from graphene, we investigate a device structure of a carbon chain connecting two zigzag graphene nanoribbons with highly tunable spin-dependent transport properties. Our calculation based on the non-equilibrium Green's function approach combined with the density functional theory shows that the transport behavior is sensitive to the spin configuration of the leads and the bridge position in the gap. A bridge in the middle gives an overall good coupling except for around the Fermi energy where the leads with anti-parallel spins create a small transport gap, while the leads with parallel spins give a finite density of states and induce an even-odd oscillation in conductance in terms of the number of atoms in the carbon chain. On the other hand, a bridge at the edge shows a transport behavior associated with the spin-polarized edge states, presenting sharp pure α-spin and ß-spin peaks beside the Fermi energy in the transmission function. This makes it possible to realize on-chip interconnects or spintronic devices by tuning the spin state of the leads and the bridge position.

8.
J Chem Phys ; 137(5): 054101, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22894326

RESUMO

The collective electronic excitation in planar sodium clusters is studied by time-dependent density functional theory calculations. The formation and development of the resonances in photoabsorption spectra are investigated in terms of the shape and size of the two-dimensional (2D) systems. The nature of these resonances is revealed by the frequency-resolved induced charge densities present on a real-space grid. For long double chains, the excitation is similar to that in long single atomic chains, showing longitudinal modes, end and central transverse modes. However, for 2D planes consisting of (n × n) atoms with n being up to 16, new 2D characteristic modes emerge regardless of the symmetries considered. For in-plane excitations, besides the equivalent end mode, mixed modes with contrary polarity occur. The relation between the frequency of the primary modes and the system size is similar to the case of a 2D electron gas but with a correction due to the realistic atomic structure. For excitations perpendicular to the plane there are corner, side center, bulk center, and circuit modes. Our calculation reveals the importance of dimensionality for plasmon excitation and how it evolves from 1D to 2D.

9.
Nanotechnology ; 22(43): 435702, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21967829

RESUMO

One of the most severe limits of graphene nanoribbons (GNRs) in future applications is that zigzag GNRs (ZGNRs) are gapless, so cannot be used in field effect transistors (FETs), and armchair GNR (AGNR) based FETs require atomically precise control of edges and width. Using the tight-binding approach and first principles method, we derived and proved a general boundary condition for the opening of a significant bandgap in ZGNRs with defective edge structures. The proposed semiconducting ZGNRs have some interesting properties one of which is that they can be embedded and integrated in a large piece of graphene without the need to completely cut them out. We also demonstrated a new type of high-performance all-ZGNR FET. Previous proposals of graphene FETs are all based on AGNRs.

10.
J Chem Phys ; 132(23): 234105, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20572687

RESUMO

We investigate transport properties of molecular junctions under two types of bias--a short time pulse or an ac bias--by combining a solution for Green's functions in the time domain with electronic structure information coming from ab initio density functional calculations. We find that the short time response depends on lead structure, bias voltage, and barrier heights both at the molecule-lead contacts and within molecules. Under a low frequency ac bias, the electron flow either tracks or leads the bias signal (resistive or capacitive response) depending on whether the junction is perfectly conducting or not. For high frequency, the current lags the bias signal due to the kinetic inductance. The transition frequency is an intrinsic property of the junctions.

11.
J Chem Phys ; 132(11): 114703, 2010 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-20331312

RESUMO

The establishment of conductive graphene-molecule-graphene junction is investigated through first-principles electronic structure calculations and quantum transport calculations. The junction consists of a conjugated molecule connecting two parallel graphene sheets. The effects of molecular electronic states, structure relaxation, and molecule-graphene contact on the conductance of the junction are explored. A conductance as large as 0.38 conductance quantum is found achievable with an appropriately oriented dithiophene bridge. This work elucidates the designing principles of promising nanoelectronic devices based on conductive graphene-molecule-graphene junctions.


Assuntos
Grafite/química , Teoria Quântica , Condutividade Elétrica , Modelos Moleculares , Estrutura Molecular
12.
Nano Lett ; 9(3): 1011-4, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19203208

RESUMO

Molecular nanojunctions may support efficient thermoelectric conversion through enhanced thermopower. Recently, this quantity has been measured for several conjugated molecular nanojunctions with gold electrodes. Considering the wide variety of possible metal/molecule systems-almost none of which have been studied-it seems highly desirable to be able to calculate the thermopower of junctions with reasonable accuracy and high efficiency. To address this task, we demonstrate an effective approach based on the single particle green function (SPGF) method combined with density functional theory (DFT) using B3LYP and PBE0 energy functionals. Systematic good agreement between theory and experiment is obtained; indeed, much better agreement is found here than for comparable calculations of the conductance.


Assuntos
Biofísica/métodos , Nanotecnologia/métodos , Condutividade Elétrica , Eletroquímica/métodos , Eletrodos , Ouro/química , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Prótons , Reprodutibilidade dos Testes , Termodinâmica
13.
Nano Lett ; 8(10): 3257-61, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18803424

RESUMO

Quantum interference in coherent transport through single molecular rings may provide a mechanism to control the current in molecular electronics. We investigate its applicability, using a single-particle Green function method combined with ab initio electronic structure calculations. We find that the quantum interference effect (QIE) is strongly dependent on the interaction between molecular pi-states and contact sigma-states. It is masked by sigma tunneling in small molecular rings with Au leads, such as benzene, due to strong pi-sigma hybridization, while it is preserved in large rings, such as [18]annulene, which then could be used to realize quantum interference effect (QIE) transistors.

14.
J Chem Phys ; 127(14): 141104, 2007 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-17935378

RESUMO

In the context of investigating organic molecules for molecular electronics, doping molecular wires with transition metal atoms provides additional means of controlling their transport behavior. The incorporation of transition metal atoms may generate spin dependence because the conduction channels of only one spin component align with the chemical potential of the leads, resulting in a spin polarized electric current. The possibility to create such a spin polarized current is investigated here with the organometallic moiety cobaltocene. According to our calculations, cobaltocene contacted with gold electrodes acts as a robust spin filter: Applying a voltage less than 0.2 V causes the current of one spin component crossing the molecular bridge to be two orders of magnitude larger than the other. We address the key issue of sensitivity to molecule-lead geometry by showing that a weak barrier generated by CH(2) groups between the cobaltocene and the leads is crucial in reducing the sensitivity to the contact geometry while only reducing the current modestly. These results suggest cobaltocene as a robust basic building block for molecular spintronics.

15.
J Chem Phys ; 127(14): 144107, 2007 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-17935386

RESUMO

We investigate electron transport through single conjugated molecules--including benzenedithiol, oligophenylene ethynylenes of different lengths, and a ferrocene-containing molecule sandwiched between two gold electrodes with different contact structures--by using a single-particle Green function method combined with density functional theory calculation. We focus on the effect of the basis set in the ab initio calculation. It is shown that the position of the Fermi energy in the transport gap is sensitive to the molecule-lead charge transfer which is affected by the size of basis set. This can dramatically change, by orders of magnitude, the conductance for long molecules, though the effect is only minor for short ones. A resonance around the Fermi energy tends to pin the position of the Fermi energy and suppress this effect. The result is discussed in comparison with experimental data.

16.
Phys Rev Lett ; 99(14): 146802, 2007 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17930697

RESUMO

The transparency of contacts between conjugated molecules and metallic single-walled carbon nanotubes is investigated using a single-particle Green's function method which combines a Landauer approach with ab initio density functional theory. We find that the overall conjugation required for good contact transparency is broken by connecting through a six-member ring on the tube. Full conjugation achieved by an all-carbon contact through a five-member ring leads to near perfect contact transparency for different conjugated molecular bridges.

17.
J Chem Phys ; 126(20): 201102, 2007 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-17552745

RESUMO

The effect of the exchange-correlation potential in ab initio electron transport calculations is investigated by constructing optimized effective potentials using different energy functionals or the electron density from second-order perturbation theory. The authors calculate electron transmission through two atomic chain systems, one with charge transfer and one without. Dramatic effects are caused by two factors: changes in the energy gap and the self-interaction error. The error in conductance caused by the former is about one order of magnitude while that caused by the latter ranges from several times to two orders of magnitude, depending on the coupling strength and charge transfer. The implications for accurate quantum transport calculations are discussed.

18.
J Am Chem Soc ; 128(19): 6274-5, 2006 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-16683765

RESUMO

Analogous to a quantum double-dot system, diblock structured molecules could also show negative differential resistance (NDR). Using combined density functional theory and nonequilibrium Green function technique, we show that molecular-level crossing in a molecular double-dot system containing cobaltocene and ferrocene leads to NDR and hysteresis.

19.
J Chem Phys ; 124(18): 181102, 2006 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-16709090

RESUMO

We address the quality of electrical contact between carbon nanotubes and metallic electrodes by performing first-principles calculations for the electron transmission through ideal 2- and 3-terminal junctions, thus revealing the physical limit of tube-metal conduction. The structural model constructed involves surrounding the tube by the metal atoms of the electrode as in most experiments; we consider metallic (5,5) and n-doped semiconducting (10,0) tubes surrounded by Au or Pd. In the case of metallic tubes, the contact conductance is shown to approach the ideal 4e2/h in the limit of large contact area. For three-terminals, the division of flux among the different transmission channels depends strongly on the metal material. A Pd electrode has nearly perfect tube-electrode transmission and therefore turns off the straight transport along the tube. Our results are in good agreement with some recent experimental reports and clarify a fundamental discrepancy between theory and experiment.

20.
J Chem Phys ; 124(2): 024718, 2006 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-16422637

RESUMO

We study the rectification of current through a single molecule with an intrinsic spatial asymmetry. The molecule contains a cobaltocene moiety in order to take advantage of its relatively localized and high-energy d states. A rectifier with large voltage range, high current, and low threshold can be realized. The evolution of molecular orbitals under both forward and reverse biases is captured in a self-consistent nonequilibrium Green function plus density functional theory description. Our calculations demonstrate the plausibility of making excellent molecular diodes by using metallocenes, pointing to a fruitful class of molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA