Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuron ; 112(8): 1249-1264.e8, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366598

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by cytoplasmic deposition of the nuclear TAR-binding protein 43 (TDP-43). Although cytoplasmic re-localization of TDP-43 is a key event in the pathogenesis of ALS/FTD, the underlying mechanisms remain unknown. Here, we identified a non-canonical interaction between 14-3-3θ and TDP-43, which regulates nuclear-cytoplasmic shuttling. Neuronal 14-3-3θ levels were increased in sporadic ALS and FTD with TDP-43 pathology. Pathogenic TDP-43 showed increased interaction with 14-3-3θ, resulting in cytoplasmic accumulation, insolubility, phosphorylation, and fragmentation of TDP-43, resembling pathological changes in disease. Harnessing this increased affinity of 14-3-3θ for pathogenic TDP-43, we devised a gene therapy vector targeting TDP-43 pathology, which mitigated functional deficits and neurodegeneration in different ALS/FTD mouse models expressing mutant or non-mutant TDP-43, including when already symptomatic at the time of treatment. Our study identified 14-3-3θ as a mediator of cytoplasmic TDP-43 localization with implications for ALS/FTD pathogenesis and therapy.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/metabolismo , Neurônios/metabolismo
2.
Neuropathol Appl Neurobiol ; 49(4): e12931, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37565253

RESUMO

BACKGROUND: Reduced folate status and elevated levels of circulating homocysteine are modifiable risk factors for cognitive decline and dementia. Disturbances in one-carbon metabolism are associated with the pathological accumulation of phosphorylated tau, a hallmark feature of prevalent dementia, including Alzheimer's disease and subgroups of frontotemporal dementia. METHODS: Here, using transgenic TAU58/2 mouse models of human tauopathy, we tested whether dietary supplementation with L-methylfolate (the active folate form), choline and betaine can reduce tau phosphorylation and associated behavioural phenotypes. RESULTS: TAU58/2 mice fed with the methyl donor-enriched diet showed reduced phosphorylation of tau at the pathological S202 (CP13) and S396/S404 (PHF-1) epitopes and alleviation of associated motor and learning deficits. Compared with mice on the control diet, the decrease in cortical phosphorylated tau levels in mice fed with the methyl donor-enriched diet was associated with enhanced methylation of protein phosphatase 2A, the major brain tau Ser/Thr phosphatase. It also correlated with a reduction in protein levels of Fyn, a tau tyrosine kinase that plays a central role in mediating pathological tau-induced neurodegeneration. Conversely, Fyn expression levels were increased in mice with deficiencies in folate metabolism. CONCLUSIONS: Our findings provide the first experimental evidence that boosting one-carbon metabolism with L-methylfolate, choline and betaine can mitigate key pathological, learning and motor deficits in a tauopathy mouse model. They give support to using a combination of methyl donors as a preventive or disease-modifying strategy for tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Humanos , Animais , Proteína Fosfatase 2/metabolismo , Proteínas tau/metabolismo , Betaína , Tauopatias/patologia , Camundongos Transgênicos , Doença de Alzheimer/metabolismo , Fosforilação , Modelos Animais de Doenças , Ácido Fólico , Colina , Suplementos Nutricionais , Carbono
3.
Sci Adv ; 9(23): eadg2248, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37285437

RESUMO

Numerous viruses use specialized surface molecules called fusogens to enter host cells. Many of these viruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can infect the brain and are associated with severe neurological symptoms through poorly understood mechanisms. We show that SARS-CoV-2 infection induces fusion between neurons and between neurons and glia in mouse and human brain organoids. We reveal that this is caused by the viral fusogen, as it is fully mimicked by the expression of the SARS-CoV-2 spike (S) protein or the unrelated fusogen p15 from the baboon orthoreovirus. We demonstrate that neuronal fusion is a progressive event, leads to the formation of multicellular syncytia, and causes the spread of large molecules and organelles. Last, using Ca2+ imaging, we show that fusion severely compromises neuronal activity. These results provide mechanistic insights into how SARS-CoV-2 and other viruses affect the nervous system, alter its function, and cause neuropathology.


Assuntos
COVID-19 , Animais , Humanos , Camundongos , SARS-CoV-2/fisiologia , Neurônios , Encéfalo , Neuroglia
4.
Neuropathol Appl Neurobiol ; 49(2): e12902, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951214

RESUMO

AIMS: Amyotrophic lateral sclerosis (ALS) is characterised by a progressive loss of upper and lower motor neurons leading to muscle weakness and eventually death. Frontotemporal dementia (FTD) presents clinically with significant behavioural decline. Approximately 10% of cases have a known family history, and disease-linked mutations in multiple genes have been identified in FTD and ALS. More recently, ALS and FTD-linked variants have been identified in the CCNF gene, which accounts for an estimated 0.6% to over 3% of familial ALS cases. METHODS: In this study, we developed the first mouse models expressing either wild-type (WT) human CCNF or its mutant pathogenic variant S621G to recapitulate key clinical and neuropathological features of ALS and FTD linked to CCNF disease variants. We expressed human CCNF WT or CCNFS621G throughout the murine brain by intracranial delivery of adeno-associated virus (AAV) to achieve widespread delivery via somatic brain transgenesis. RESULTS: These mice developed behavioural abnormalities, similar to the clinical symptoms of FTD patients, as early as 3 months of age, including hyperactivity and disinhibition, which progressively deteriorated to include memory deficits by 8 months of age. Brains of mutant CCNF_S621G mice displayed an accumulation of ubiquitinated proteins with elevated levels of phosphorylated TDP-43 present in both CCNF_WT and mutant CCNF_S621G mice. We also investigated the effects of CCNF expression on interaction targets of CCNF and found elevated levels of insoluble splicing factor proline and glutamine-rich (SFPQ). Furthermore, cytoplasmic TDP-43 inclusions were found in both CCNF_WT and mutant CCNF_S621G mice, recapitulating the key hallmark of FTD/ALS pathology. CONCLUSIONS: In summary, CCNF expression in mice reproduces clinical presentations of ALS, including functional deficits and TDP-43 neuropathology with altered CCNF-mediated pathways contributing to the pathology observed.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Animais , Camundongos , Lactente , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/patologia , Neurônios Motores/patologia , Mutação , Proteínas de Ligação a DNA/metabolismo , Ciclinas/genética , Ciclinas/metabolismo
5.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499097

RESUMO

The use of cellular models is a common means to investigate the potency of therapeutics in pre-clinical drug discovery. However, there is currently no consensus on which model most accurately replicates key aspects of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) pathology, such as accumulation of insoluble, cytoplasmic transactive response DNA-binding protein (TDP-43) and the formation of insoluble stress granules. Given this, we characterised two TDP-43 proteinopathy cellular models that were based on different aetiologies of disease. The first was a sodium arsenite-induced chronic oxidative stress model and the second expressed a disease-relevant TDP-43 mutation (TDP-43 M337V). The sodium arsenite model displayed most aspects of TDP-43, stress granule and ubiquitin pathology seen in human ALS/FTD donor tissue, whereas the mutant cell line only modelled some aspects. When these two cellular models were exposed to small molecule chemical probes, different effects were observed across the two models. For example, a previously disclosed sulfonamide compound decreased cytoplasmic TDP-43 and increased soluble levels of stress granule marker TIA-1 in the cellular stress model without impacting these levels in the mutant cell line. This study highlights the challenges of using cellular models in lead development during drug discovery for ALS and FTD and reinforces the need to perform assessments of novel therapeutics across a variety of cell lines and aetiological models.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Proteinopatias TDP-43 , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Proteinopatias TDP-43/genética , Descoberta de Drogas
6.
Sci Adv ; 8(48): eadd2577, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459557

RESUMO

Hyperphosphorylated microtubule-associated protein tau has been implicated in dementia, epilepsy, and other neurological disorders. In contrast, site-specific phosphorylation of tau at threonine 205 (T205) by the kinase p38γ was shown to disengage tau from toxic pathways, serving a neuroprotective function in Alzheimer's disease. Using a viral-mediated gene delivery approach in different mouse models of epilepsy, we show that p38γ activity-enhancing treatment reduces seizure susceptibility, restores neuronal firing patterns, reduces behavioral deficits, and ameliorates epilepsy-induced deaths. Furthermore, we show that p38γ-mediated phosphorylation of tau at T205 is essential for this protection in epilepsy, as a lack of this critical interaction reinstates pathological features and accelerates epilepsy in vivo. Hence, our work provides a scope to harness p38γ as a future therapy applicable to acute neurological conditions.


Assuntos
Doença de Alzheimer , Epilepsia , Animais , Camundongos , Epilepsia/genética , Epilepsia/terapia , Convulsões/genética , Convulsões/terapia , Fosforilação , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Modelos Animais de Doenças
7.
Cells ; 11(20)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36291062

RESUMO

Cortical organoids are 3D structures derived either from human embryonic stem cells or human induced pluripotent stem cells with their use exploding in recent years due to their ability to better recapitulate the human brain in vivo in respect to organization; differentiation; and polarity. Adeno-associated viruses (AAVs) have emerged in recent years as the vectors of choice for CNS-targeted gene therapy. Here; we compare the use of AAVs as a mode of gene expression in cortical organoids; over traditional methods such as lipofectamine and electroporation and demonstrate its ease-of-use in generating quick disease models through expression of different variants of the central gene-TDP-43-implicated in amyotrophic lateral sclerosis and frontotemporal dementia.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Humanos , Dependovirus/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Organoides/metabolismo , Células-Tronco
8.
Acta Neuropathol ; 144(4): 637-650, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35780436

RESUMO

In Alzheimer's disease (AD), where amyloid-ß (Aß) and tau deposits in the brain, hyperexcitation of neuronal networks is an underlying disease mechanism, but its cause remains unclear. Here, we used the Collaborative Cross (CC) forward genetics mouse platform to identify modifier genes of neuronal hyperexcitation. We found LAMP5 as a novel regulator of hyperexcitation in mice, critical for the survival of distinct interneuron populations. Interestingly, synaptic LAMP5 was lost in AD brains and LAMP5 interneurons degenerated in different AD mouse models. Genetic reduction of LAMP5 augmented functional deficits and neuronal network hypersynchronicity in both Aß- and tau-driven AD mouse models. To this end, our work defines the first specific function of LAMP5 interneurons in neuronal network hyperexcitation in AD and dementia with tau pathology.


Assuntos
Doença de Alzheimer , Proteínas de Membrana Lisossomal/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/fisiologia , Animais , Modelos Animais de Doenças , Interneurônios/patologia , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Proteínas tau/genética
9.
Biomater Sci ; 10(15): 4037-4057, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35708540

RESUMO

Vaccination is a proven way to protect individuals against many infectious diseases, as currently highlighted in the global COVID-19 pandemic. Peptides- or small molecule antigen-based vaccination offer advantages over the classical vaccine approaches. However, peptides or small molecules by themselves are generally not sufficiently immunogenic, and thus require an adjuvant to boost an immune response. Several conjugated systems have been developed in recent years to overcome this obstacle. This review summarises different moieties which, when conjugated to peptide antigens, facilitate a specific immune response. Different classes of self-adjuvant moieties are reviewed, including self-assembly peptides, lipids, glycolipids, and polymers.


Assuntos
COVID-19 , Desenvolvimento de Vacinas , Adjuvantes Imunológicos/química , Adjuvantes Farmacêuticos , Antígenos , COVID-19/prevenção & controle , Humanos , Pandemias , Peptídeos/química
10.
PLoS One ; 17(5): e0254296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35522669

RESUMO

The translocator protein (TSPO) has been implicated in mitochondrial transmembrane cholesterol transport, brain inflammation, and other mitochondrial functions. It is upregulated in glial cells during neuroinflammation in Alzheimer's disease. High affinity TSPO imaging radioligands are utilized to visualize neuroinflammation. However, this is hampered by the common A147T polymorphism which compromises ligand binding. Furthermore, this polymorphism has been linked to increased risk of neuropsychiatric disorders, and possibly reduces TSPO protein stability. Here, we used immunoprecipitation coupled to mass-spectrometry (IP-MS) to establish a mitochondrial protein binding profile of wild-type (WT) TSPO and the A147T polymorphism variant. Using mitochondria from human glial cells expressing either WT or A147T TSPO, we identified 30 WT TSPO binding partners, yet only 23 for A147T TSPO. Confirming that A147T polymorphism of the TSPO might confer loss of function, we found that one of the identified interactors of WT TSPO, 14-3-3 theta (YWHAQ), a protein involved in regulating mitochondrial membrane proteins, interacts much less with A147T TSPO. Our data presents a network of mitochondrial interactions of TSPO and its A147T polymorphism variant in human glial cells and indicate functional relevance of A147T in mitochondrial protein networks.


Assuntos
Proteínas Mitocondriais , Receptores de GABA , Humanos , Ligantes , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Polimorfismo Genético , Receptores de GABA/metabolismo
11.
Front Chem ; 9: 781213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966720

RESUMO

The LIM-domain kinase (LIMK) family consists of two isoforms, LIMK1 and LIMK2, which are highly homologous, making selective inhibitor development challenging. LIMK regulates dynamics of the actin cytoskeleton, thereby impacting many cellular functions including cell morphology and motility. Here, we designed and synthesised analogues of a known pyrrolopyrimidine LIMK inhibitor with moderate selectivity for LIMK1 over LIMK2 to gain insights into which features contribute to both activity and selectivity. We incorporated a different stereochemistry around a cyclohexyl central moiety to achieve better selectivity for different LIMK isoforms. Inhibitory activity was assessed by kinase assays, and biological effects in cells were determined using an in vitro wound closure assay. Interestingly, a slight change in stereochemistry alters LIMK isoform selectivity. Finally, a docking study was performed to predict how the new compounds interact with the target.

12.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502205

RESUMO

Tropomyosin (Tpm) has been regarded as the master regulator of actin dynamics. Tpms regulate the binding of the various proteins involved in restructuring actin. The actin cytoskeleton is the predominant cytoskeletal structure in dendritic spines. Its regulation is critical for spine formation and long-term activity-dependent changes in synaptic strength. The Tpm isoform Tpm3.1 is enriched in dendritic spines, but its role in regulating the synapse structure and function is not known. To determine the role of Tpm3.1, we studied the synapse structure and function of cultured hippocampal neurons from transgenic mice overexpressing Tpm3.1. We recorded hippocampal field excitatory postsynaptic potentials (fEPSPs) from brain slices to examine if Tpm3.1 overexpression alters long-term synaptic plasticity. Tpm3.1-overexpressing cultured neurons did not show a significantly altered dendritic spine morphology or synaptic activity. Similarly, we did not observe altered synaptic transmission or plasticity in brain slices. Furthermore, expression of Tpm3.1 at the postsynaptic compartment does not increase the local F-actin levels. The results suggest that although Tpm3.1 localises to dendritic spines in cultured hippocampal neurons, it does not have any apparent impact on dendritic spine morphology or function. This is contrary to the functional role of Tpm3.1 previously observed at the tip of growing neurites, where it increases the F-actin levels and impacts growth cone dynamics.


Assuntos
Espinhas Dendríticas/fisiologia , Potenciais Pós-Sinápticos Excitadores , Hipocampo/fisiologia , Neurogênese , Plasticidade Neuronal , Sinapses/fisiologia , Tropomiosina/metabolismo , Citoesqueleto de Actina , Animais , Células Cultivadas , Feminino , Hipocampo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas , Tropomiosina/genética
13.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360544

RESUMO

The abnormal mislocalisation and ubiquitinated protein aggregation of the TAR DNA binding protein 43 (TDP-43) within the cytoplasm of neurons and glia in the central nervous system (CNS) is a pathological hallmark of early-onset neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The pathomechanisms underlying abnormal mislocalisation and aggregation of TDP-43 remain unknown. However, there is a growing body of evidence implicating neuroinflammation and immune-mediated mechanisms in the pathogenesis of neurodegeneration. Importantly, most of the evidence for an active role of immunity and inflammation in the pathogenesis of ALS and FTD relates specifically to TDP-43, posing the question as to whether immune-mediated mechanisms could hold the key to understanding TDP-43's underlying role in neurodegeneration in both diseases. Therefore, this review aims to piece together key lines of evidence for the specific association of TDP-43 with key immune and inflammatory pathways to explore the nature of this relationship and the implications for potential pathomechanisms underlying neurodegeneration in ALS and FTD.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/genética , Demência Frontotemporal/patologia , Inflamação/complicações , Mutação , Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Demência Frontotemporal/etiologia , Demência Frontotemporal/metabolismo , Humanos , Inflamação/classificação
14.
Biochem J ; 478(7): 1471-1484, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33769438

RESUMO

Tau pathology initiates in defined brain regions and is known to spread along neuronal connections as symptoms progress in Alzheimer's disease (AD) and other tauopathies. This spread requires the release of tau from donor cells, but the underlying molecular mechanisms remained unknown. Here, we established the interactome of the C-terminal tail region of tau and identified syntaxin 8 (STX8) as a mediator of tau release from cells. Similarly, we showed the syntaxin 6 (STX6), part of the same SNARE family as STX8 also facilitated tau release. STX6 was previously genetically linked to progressive supranuclear palsy (PSP), a tauopathy. Finally, we demonstrated that the transmembrane domain of STX6 is required and sufficient to mediate tau secretion. The differential role of STX6 and STX8 in alternative secretory pathways suggests the association of tau with different secretory processes. Taken together, both syntaxins, STX6 and STX8, may contribute to AD and PSP pathogenesis by mediating release of tau from cells and facilitating pathology spreading.


Assuntos
Doença de Alzheimer/patologia , Domínios e Motivos de Interação entre Proteínas , Proteínas Qa-SNARE/metabolismo , Via Secretória , Tauopatias/patologia , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Ligação Proteica , Proteínas Qa-SNARE/genética , Tauopatias/genética , Tauopatias/metabolismo , Proteínas tau/genética
15.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33737393

RESUMO

Neurons are postmitotic cells. Reactivation of the cell cycle by neurons has been reported in Alzheimer's disease (AD) brains and models. This gave rise to the hypothesis that reentering the cell cycle renders neurons vulnerable and thus contributes to AD pathogenesis. Here, we use the fluorescent ubiquitination-based cell cycle indicator (FUCCI) technology to monitor the cell cycle in live neurons. We found transient, self-limited cell cycle reentry activity in naive neurons, suggesting that their postmitotic state is a dynamic process. Furthermore, we observed a diverse response to oligomeric amyloid-ß (oAß) challenge; neurons without cell cycle reentry activity would undergo cell death without activating the FUCCI reporter, while neurons undergoing cell cycle reentry activity at the time of the oAß challenge could maintain and increase FUCCI reporter signal and evade cell death. Accordingly, we observed marked neuronal FUCCI positivity in the brains of human mutant Aß precursor protein transgenic (APP23) mice together with increased neuronal expression of the endogenous cell cycle control protein geminin in the brains of 3-mo-old APP23 mice and human AD brains. Taken together, our data challenge the current view on cell cycle in neurons and AD, suggesting that pathways active during early cell cycle reentry in neurons protect from Aß toxicity.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Ciclo Celular/fisiologia , Neurônios/fisiologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/farmacologia , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Biomarcadores , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Camundongos , Camundongos Transgênicos
16.
Hum Mol Genet ; 30(11): 971-984, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33729478

RESUMO

Previously, we identified missense mutations in CCNF that are causative of familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Hallmark features of these diseases include the build-up of insoluble protein aggregates as well as the mislocalization of proteins such as transactive response DNA binding protein 43 kDa (TDP-43). In recent years, the dysregulation of SFPQ (splicing factor proline and glutamine rich) has also emerged as a pathological hallmark of ALS/FTD. CCNF encodes for the protein cyclin F, a substrate recognition component of an E3 ubiquitin ligase. We have previously shown that ALS/FTD-linked mutations in CCNF cause disruptions to overall protein homeostasis that leads to a build-up of K48-linked ubiquitylated proteins as well as defects in autophagic machinery. To investigate further processes that may be affected by cyclin F, we used a protein-proximity ligation method, known as Biotin Identification (BioID), standard immunoprecipitations and mass spectrometry to identify novel interaction partners of cyclin F and infer further process that may be affected by the ALS/FTD-causing mutation. Results demonstrate that cyclin F closely associates with proteins involved with RNA metabolism as well as a number of RNA-binding proteins previously linked to ALS/FTD, including SFPQ. Notably, the overexpression of cyclin F(S621G) led to the aggregation and altered subcellular distribution of SFPQ in human embryonic kidney (HEK293) cells, while leading to altered degradation in primary neurons. Overall, our data links ALS/FTD-causing mutations in CCNF to converging pathological features of ALS/FTD and provides a link between defective protein degradation systems and the pathological accumulation of a protein involved in RNA processing and metabolism.


Assuntos
Esclerose Lateral Amiotrófica/genética , Ciclinas/genética , Demência Frontotemporal/genética , Fator de Processamento Associado a PTB/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Células HEK293 , Humanos , Agregados Proteicos/genética , Mapas de Interação de Proteínas/genética , Proteólise , RNA/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação a RNA/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-35083468

RESUMO

BACKGROUND: Behavioral variant frontotemporal dementia (bvFTD) is a common form of younger-onset dementia with a proportion of cases overlapping pathologically and genetically with amyotrophic lateral sclerosis (ALS). Previous studies have identified that the human endogenous retrovirus K (HERV-K) is elevated in ALS serum and is associated with ALS TDP-43 pathology. In contrast, little is known about HERV-K changes in bvFTD. Here, we investigated the possible role of HERV-K in bvFTD. METHODS: We measured the HERV-K env gene in sporadic bvFTD (N=63), sporadic ALS (N=89) and control (N=21) serum by ddPCR. We also analyzed HERV-K env, by qPCR, and the HERV-K reverse transcriptase protein, by confocal immunofluorescence microscopy, in the disease-affected superior frontal cortex of bvFTD with TDP-43 pathology. RESULTS: Here, we show that HERV-K env levels are significantly elevated (P=3.5×10-6) in bvFTD compared to control serum, differentiating cases with an AUC value of 0.867. HERV-K env levels are also specifically elevated in the superior frontal cortex of bvFTD with TDP-43 pathology, with the HERV-K reverse transcriptase protein and TDP-43 deposit localized to the neuronal cytoplasm. Furthermore, in a neuronal cell line overexpression of TDP-43 induces HERV-K env transcription. CONCLUSIONS: These results suggest that manifestation of HERV-K is associated with bvFTD TDP-43 pathology. Analysis of HERV-K in bvFTD may provide insight into an unrecognized but targetable perturbed pathology.

18.
Neuroscience ; 449: 46-62, 2020 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-32949670

RESUMO

Pathological forms of the microtubule-associated protein tau are involved in a large group of neurodegenerative diseases named tauopathies, including frontotemporal lobar degeneration (FTLD-tau). K369I mutant tau transgenic mice (K3 mice) recapitulate neural and behavioural symptoms of FTLD, including tau aggregates in the cortex, alterations to nigrostriatum, memory deficits and parkinsonism. The aim of this study was to further characterise the K3 mouse model by examining functional alterations to the striatum. Whole-cell patch-clamp electrophysiology was used to investigate the properties of striatal neurons in K3 mice and wildtype controls. Additionally, striatal-based instrumental learning tasks were conducted to assess goal-directed versus habitual behaviours (i.e., by examining sensitivity to outcome devaluation and progressive ratios). The K3 model demonstrated significant alterations in the discharge properties of striatal neurons relative to wildtype mice, which manifested as a shift in neuronal output towards a burst firing state. K3 mice acquired goal-directed responding faster than control mice and were goal-directed at test unlike wildtype mice, which is likely to indicate reduced capacity to develop habitual behaviour. The observed pattern of behaviour in K3 mice is suggestive of deficits in dorsal lateral striatal function and this was supported by our electrophysiological findings. Thus, both the electrophysiological and behavioural alterations indicate that K3 mice have early deficits in striatal function. This finding adds to the growing literature which indicate that the striatum is impacted in tau-related neuropathies such as FTLD, and further suggests that the K3 model is a unique mouse model for investigating FTLD especially with striatal involvement.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Tauopatias , Animais , Objetivos , Camundongos , Camundongos Transgênicos , Neurônios , Proteínas tau/genética
19.
Sci Rep ; 10(1): 13845, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796905

RESUMO

Antibodies have been explored extensively as a potential therapeutic for Alzheimer's disease, where amyloid-ß (Aß) peptides and the tau protein deposit in patient brains. While the major focus of antibody-based therapy development was on Aß, arguably with limited success in clinical trials, targeting tau has become an emerging strategy, possibly extending therapies to dementias with isolated tau pathology. Interestingly, low titres of autoantibodies to pathological tau have been described in humans and transgenic mouse models, but their pathophysiological relevance remained elusive. Here, we used two independent approaches to deplete the B-cell lineage and hence antibody formation in human P301S mutant tau transgenic mice, TAU58/2. TAU58/2 mice were either crossed with the B-cell-deficient Ighm knockout line (muMT-/-) or treated with anti-CD20 antibodies that target B-cell precursors. In both models, B-cell depletion significantly reduced astrocytosis in TAU58/2 mice. Only when B-cells were absent throughout life, in TAU58/2.muMT-/- mice, were spatial learning deficits moderately aggravated while motor performance improved as compared to B-cell-competent TAU58/2 mice. This was associated with changes in brain region-specific tau solubility. No other relevant behavioural or neuropathological changes were observed in TAU58/2 mice in the absence of B-cells/antibodies. Taken together, our data suggests that the presence of antibodies throughout life contributes to astrocytosis in TAU58/2 mice and limits learning deficits, while other deficits and neuropathological changes appear to be independent of the presence of B-cells/antibodies.


Assuntos
Autoanticorpos , Linfócitos B/imunologia , Gliose/genética , Gliose/imunologia , Deficiências da Aprendizagem/genética , Deficiências da Aprendizagem/imunologia , Proteínas tau/genética , Proteínas tau/imunologia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos Transgênicos , Mutação , Proteínas tau/metabolismo
20.
Acta Neuropathol ; 140(3): 279-294, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32725265

RESUMO

Hyperphosphorylation of the neuronal tau protein contributes to Alzheimer's disease (AD) by promoting tau pathology and neuronal and cognitive deficits. In contrast, we have previously shown that site-specific tau phosphorylation can inhibit toxic signals induced by amyloid-ß (Aß) in mouse models. The post-synaptic mitogen-activated protein (MAP) kinase p38γ mediates this site-specific phosphorylation on tau at Threonine-205 (T205). Using a gene therapeutic approach, we draw on this neuroprotective mechanism to improve memory in two Aß-dependent mouse models of AD at stages when advanced memory deficits are present. Increasing activity of post-synaptic kinase p38γ that targets T205 in tau reduced memory deficits in symptomatic Aß-induced AD models. Reconstitution experiments with wildtype human tau or phosphorylation-deficient tauT205A showed that T205 modification is critical for downstream effects of p38γ that prevent memory impairment in APP-transgenic mice. Furthermore, genome editing of the T205 codon in the murine Mapt gene showed that this single side chain in endogenous tau critically modulates memory deficits in APP-transgenic Alzheimer's mice. Ablating the protective effect of p38γ activity by genetic p38γ deletion in a tau transgenic mouse model that expresses non-pathogenic tau rendered tau toxic and resulted in impaired memory function in the absence of human Aß. Thus, we propose that modulating neuronal p38γ activity serves as an intrinsic tau-dependent therapeutic approach to augment compromised cognition in advanced dementia.


Assuntos
Doença de Alzheimer/metabolismo , Transtornos Cognitivos/metabolismo , Transtornos da Memória/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Cognitivos/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Memória/fisiologia , Transtornos da Memória/genética , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA