Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
CNS Neurosci Ther ; 30(7): e14843, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38997814

RESUMO

BACKGROUND: Although white matter hyperintensity (WMH) is closely associated with cognitive decline, the precise neurobiological mechanisms underlying this relationship are not fully elucidated. Connectome studies have identified a primary-to-transmodal gradient in functional brain networks that support the spectrum from sensation to cognition. However, whether connectome gradient structure is altered as WMH progresses and how this alteration is associated with WMH-related cognitive decline remain unknown. METHODS: A total of 758 WMH individuals completed cognitive assessment and resting-state functional MRI (rs-fMRI). The functional connectome gradient was reconstructed based on rs-fMRI by using a gradient decomposition framework. Interrelations among the spatial distribution of WMH, functional gradient measures, and specific cognitive domains were explored. RESULTS: As the WMH volume increased, the executive function (r = -0.135, p = 0.001) and information-processing speed (r = -0.224, p = 0.001) became poorer, the gradient range (r = -0.099, p = 0.006), and variance (r = -0.121, p < 0.001) of the primary-to-transmodal gradient reduced. A narrower gradient range (r = 0.131, p = 0.001) and a smaller gradient variance (r = 0.136, p = 0.001) corresponded to a poorer executive function. In particular, the relationship between the frontal/occipital WMH and executive function was partly mediated by gradient range/variance of the primary-to-transmodal gradient. CONCLUSIONS: These findings indicated that WMH volume, the primary-to-transmodal gradient, and cognition were interrelated. The detrimental effect of the frontal/occipital WMH on executive function was partly mediated by the decreased differentiation of the connectivity pattern between the primary and transmodal areas.


Assuntos
Disfunção Cognitiva , Conectoma , Imageamento por Ressonância Magnética , Substância Branca , Humanos , Masculino , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/patologia , Feminino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Idoso , Função Executiva/fisiologia , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia
3.
Transl Psychiatry ; 14(1): 177, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575556

RESUMO

Excessive iron accumulation in the brain cortex increases the risk of cognitive deterioration. However, interregional relationships (defined as susceptibility connectivity) of local brain iron have not been explored, which could provide new insights into the underlying mechanisms of cognitive decline. Seventy-six healthy controls (HC), 58 participants with mild cognitive impairment due to probable Alzheimer's disease (MCI-AD) and 66 participants with white matter hyperintensity (WMH) were included. We proposed a novel approach to construct a brain susceptibility network by using Kullback‒Leibler divergence similarity estimation from quantitative susceptibility mapping and further evaluated its topological organization. Moreover, sparse logistic regression (SLR) was applied to classify MCI-AD from HC and WMH with normal cognition (WMH-NC) from WMH with MCI (WMH-MCI).The altered susceptibility connectivity in the MCI-AD patients indicated that relatively more connectivity was involved in the default mode network (DMN)-related and visual network (VN)-related connectivity, while more altered DMN-related and subcortical network (SN)-related connectivity was found in the WMH-MCI patients. For the HC vs. MCI-AD classification, the features selected by the SLR were primarily distributed throughout the DMN-related and VN-related connectivity (accuracy = 76.12%). For the WMH-NC vs. WMH-MCI classification, the features with high appearance frequency were involved in SN-related and DMN-related connectivity (accuracy = 84.85%). The shared and specific patterns of the susceptibility network identified in both MCI-AD and WMH-MCI may provide a potential diagnostic biomarker for cognitive impairment, which could enhance the understanding of the relationships between brain iron burden and cognitive decline from a network perspective.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Doença de Alzheimer/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Ferro
4.
J Affect Disord ; 354: 526-535, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513774

RESUMO

BACKGROUND: White matter hyperintensities (WMHs) are associated with higher anxiety or depression (A/D) incidence. We investigated associations of WMHs with A/D, cerebrovascular reactivity (CVR), and functional connectivity (FC) to identify potential pathomechanisms. METHODS: Participants with WMH (n = 239) and normal controls (NCs, n = 327) were assessed for A/D using the Hamilton Anxiety Rating Scale (HAMA) and Hamilton Depression Rating Scale (HAMD). The CVR and FC maps were constructed from resting-state functional MRI. Two-way analysis of covariance with fixed factors A/D and WMH was performed to identify regional CVR abnormalities. Seed-based FC analyses were then conducted on regions with WMH × A/D interaction effects on CVR. Logistic regression models were constructed to examine the utility of these measurements for identifying WMH-related A/D. RESULTS: Participants with WMH related A/D exhibited significantly greater CVR in left insula and lower CVR in right superior frontal gyrus (SFG.R), and HAMA scores were negatively correlated with CVR in SFG.R (r = -0.156, P = 0.016). Insula-SFG.R negative FC was significantly weaker in WMH patients with suspected or definite A/D. A model including CVR plus FC changes identified WMH-associated A/D with highest sensitivity and specificity. In contrast, NCs with A/D exhibited greater CVR in prefrontal cortex and stronger FC within the default mode network (DMN) and between the DMN and executive control network. LIMITATIONS: This cross-sectional study requires validation by longitudinal and laboratory studies. CONCLUSIONS: Impaired CVR in SFG.R and weaker negative FC between prefrontal cortex and insula may contribute to WMH-related A/D, providing potential diagnostic imaging markers and therapeutic targets.


Assuntos
Depressão , Substância Branca , Humanos , Depressão/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estudos Transversais , Córtex Pré-Frontal/diagnóstico por imagem , Ansiedade/diagnóstico por imagem , Encéfalo
5.
CNS Neurosci Ther ; 30(2): e14545, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421136

RESUMO

OBJECTIVES: Gait disorder (GD) is a common problem in cerebral small vessel disease (CSVD). This study aimed to determine (1) the early characteristics of GD in CSVD, (2) cerebellar neuroimaging features related to GD in CSVD, and (3) the association of cognitive impairment with GD. METHODS: In total, 183 subjects were enrolled in this study: patients with CSVD with normal cognitive function (CSVD-NC) group (64 subjects), patients with CSVD with mild cognitive impairment (CSVD-MCI) group (66 subjects), and a healthy control (HC) group (53 subjects). The GD patterns were evaluated using the ReadyGo three-dimensional motion balance testing system. Meanwhile, we analyzed the cerebrum and cerebellum structurally and functionally. Correlation analyses were conducted among gait indicators, neuroimaging features, and neuropsychological tests. RESULTS: Both the CSVD-NC and CSVD-MCI groups had a reduced stride length, cortical atrophy in the left cerebellum VIIIb, and decreased functional connectivity between the left cerebellum VIIIb and left SFGmed compared with the HC group. In the correlation analysis, the gray matter probability of the left cerebellum VIIIb was closely related to stride length in the HC group. In the CSVD-MCI group, linguistic function, memory, and attention were significantly correlated with gait performance. CONCLUSION: Decreased stride length was the earliest characteristic of GD in CSVD. Structural and functional regulation of the left cerebellum VIIIb could play a particularly important role in early GD in CSVD.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Transtornos dos Movimentos , Humanos , Imageamento por Ressonância Magnética/métodos , Disfunção Cognitiva/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Marcha
6.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38061698

RESUMO

Cerebral small vessel disease is common in most individuals aged 60 years or older, and it is associated with cognitive dysfunction, depression, anxiety disorder, and mobility problems. Currently, many cerebral small vessel disease patients have both cognitive impairment and depressive symptoms, but the relationship between the 2 is unclear. The present research combined static and dynamic functional network connectivity methods to explore the patterns of functional networks in cerebral small vessel disease individuals with cognitive impairment and depression (cerebral small vessel disease-mild cognitive impairment with depression) and their relationship. We found specific functional network patterns in the cerebral small vessel disease-mild cognitive impairment with depression individuals (P < 0.05). The cerebral small vessel disease individuals with depression exhibited unstable dynamic functional network connectivity states (transitions likelihood: P = 0.040). In addition, we found that the connections within the lateral visual network between the sensorimotor network and ventral attention network could mediate white matter hyperintensity-related cognitive impairment (indirect effect: 0.064; 95% CI: 0.003, 0.170) and depression (indirect effect: -0.415; 95% CI: -1.080, -0.011). Cognitive function can negatively regulate white matter hyperintensity-related depression. These findings elucidate the association between cognitive impairment and depression and provide new insights into the underlying mechanism of cerebral small vessel disease-related cognitive dysfunction and depression.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Substância Branca , Humanos , Encéfalo/diagnóstico por imagem , Depressão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
7.
Sci Total Environ ; 901: 165895, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37532043

RESUMO

Using panel data for the Yellow River Basin (YRB) of China from 2006 to 2017, we investigate cross-city conventional total factor productivity (TFP) and green TFP convergence, and the moderating effects of relative factor endowments on TFP growth. Allowing for cross-city and cross-time variation in the production function, we estimate TFP across cities using a nonlinear varying coefficient model, and decompose it into various input-embedded and input-free productivity components based on the new growth accounting, covering all growth-driving channels. This paper then employs a conditional convergence framework to examine whether convergence occurs, through which channels, and the effects of relative factor endowments on them. Empirical results show that lagging cities fail to achieve TFP catch-up, and that the divergence of capital-embedded and labor-embedded productivity instead triggers a widening of the cross-city TFP gap. Part of the cause of this increase in these gaps is that cities with relatively high capital deepening and capital-to-energy ratio are experiencing rapid TFP growth by driving the quality of capital and labor. Nor have these effects been altered in examining environmentally constrained or green TFP convergence.

8.
Clin Interv Aging ; 18: 1333-1349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601952

RESUMO

Study Objectives: By examining spontaneous activity changes of sleep-related networks in patients with the Alzheimer's disease (AD) spectrum with or without insomnia disorder (ID) over time via neuro-navigated repetitive transcranial magnetic stimulation (rTMS), we revealed the effect and mechanism of rTMS targeting the left-angular gyrus in improving the comorbidity symptoms of the AD spectrum with ID. Methods: A total of 34 AD spectrum patients were recruited in this study, including 18 patients with ID and the remaining 16 patients without ID. All of them were measured for cognitive function and sleep by using the cognitive and sleep subscales of the neuropsychiatric inventory. The amplitude of low-frequency fluctuation changes in sleep-related networks was revealed before and after neuro-navigated rTMS treatment between these two groups, and the behavioral significance was further explored. Results: Affective auditory processing and sensory-motor collaborative sleep-related networks with hypo-spontaneous activity were observed at baseline in the AD spectrum with ID group, while substantial increases in activity were evident at follow-up in these subjects. In addition, longitudinal affective auditory processing, sensory-motor and default mode collaborative sleep-related networks with hyper-spontaneous activity were also revealed at follow-up in the AD spectrum with ID group. In particular, longitudinal changes in sleep-related networks were associated with improvements in sleep quality and episodic memory scores in AD spectrum with ID patients. Conclusion: We speculated that left angular gyrus-navigated rTMS therapy may enhance the memory function of AD spectrum patients by regulating the spontaneous activity of sleep-related networks, and it was associated with memory consolidation in the hippocampus-cortical circuit during sleep. Clinical Trial Registration: The study was registered at the Chinese Clinical Trial Registry, registration ID: ChiCTR2100050496, China.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Memória Episódica , Humanos , Doença de Alzheimer/terapia , Sono , Estimulação Magnética Transcraniana
9.
Brain Res Bull ; 202: 110714, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37495024

RESUMO

White matter hyperintensities (WMH) are widely observed in older adults and are closely associated with cognitive impairment. However, the underlying neuroimaging mechanisms of WMH-related cognitive dysfunction remain unknown. This study recruited 61 WMH individuals with mild cognitive impairment (WMH-MCI, n = 61), 48 WMH individuals with normal cognition (WMH-NC, n = 48) and 57 healthy control (HC, n = 57) in the final analyses. We constructed morphological networks by applying the Kullback-Leibler divergence to estimate interregional similarity in the distributions of regional gray matter volume. Based on morphological networks, graph theory was applied to explore topological properties, and their relationship to WMH-related cognitive impairment was assessed. There were no differences in small-worldness, global efficiency and local efficiency. The nodal local efficiency, degree centrality and betweenness centrality were altered mainly in the limbic network (LN) and default mode network (DMN). The rich-club analysis revealed that WMH-MCI subjects showed lower average strength of the feeder and local connections than HC (feeder connections: P = 0.034; local connections: P = 0.042). Altered morphological connectivity mediated the relationship between WMH and cognition, including language (total indirect effect: -0.010; 95 % CI: -0.024, -0.002) and executive (total indirect effect: -0.010; 95 % CI: -0.028, -0.002) function. The altered topological organization of morphological networks was mainly located in the DMN and LN and was associated with WMH-related cognitive impairment. The rich-club connection was relatively preserved, while the feeder and local connections declined. The results suggest that single-subject morphological networks may capture neurological dysfunction due to WMH and could be applied to the early imaging diagnostic protocol for WMH-related cognitive impairment.


Assuntos
Disfunção Cognitiva , Substância Branca , Idoso , Humanos , Cognição , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem
10.
Behav Brain Res ; 451: 114506, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37230298

RESUMO

White matter hyperintensities (WMH) of assumed vascular origin are common in elderly individuals and are closely associated with cognitive decline. However, the underlying neural mechanisms of WMH-related cognitive impairment remain unclear. After strict screening, 59 healthy controls (HC, n = 59), 51 patients with WMH and normal cognition (WMH-NC, n = 51) and 68 patients with WMH and mild cognitive impairment (WMH-MCI, n = 68) were included in the final analyses. All individuals underwent multimodal magnetic resonance imaging (MRI) and cognitive evaluations. We investigated the neural mechanism underlying WMH-related cognitive impairment based on static and dynamic functional network connectivity (sFNC and dFNC) approaches. Finally, the support vector machine (SVM) method was performed to identify WMH-MCI individuals. The sFNC analysis indicated that functional connectivity within the visual network (VN) could mediate the impairment of information processing speed related to WMH (indirect effect: 0.24; 95% CI: 0.03, 0.88 and indirect effect: 0.05; 95% CI: 0.001, 0.14). WMH may regulate the dFNC between the higher-order cognitive network and other networks and enhance the dynamic variability between the left frontoparietal network (lFPN) and the VN to compensate for the decline in high-level cognitive functions. The SVM model achieved good prediction ability for WMH-MCI patients based on the above characteristic connectivity patterns. Our findings shed light on the dynamic regulation of brain network resources to maintain cognitive processing in individuals with WMH. Crucially, dynamic reorganization of brain networks could be regarded as a potential neuroimaging biomarker for identifying WMH-related cognitive impairment.


Assuntos
Disfunção Cognitiva , Substância Branca , Humanos , Idoso , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Encéfalo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Cognição , Imageamento por Ressonância Magnética
11.
Brain Sci ; 13(5)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37239275

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that progressively affects bulbar and limb function. Despite increasing recognition of the disease as a multinetwork disorder characterized by aberrant structural and functional connectivity, its integrity agreement and its predictive value for disease diagnosis remain to be fully elucidated. In this study, we recruited 37 ALS patients and 25 healthy controls (HCs). High-resolution 3D T1-weighted imaging and resting-state functional magnetic resonance imaging were, respectively, applied to construct multimodal connectomes. Following strict neuroimaging selection criteria, 18 ALS and 25 HC patients were included. Network-based statistic (NBS) and the coupling of grey matter structural-functional connectivity (SC-FC coupling) were performed. Finally, the support vector machine (SVM) method was used to distinguish the ALS patients from HCs. Results showed that, compared with HCs, ALS individuals exhibited a significantly increased functional network, predominantly encompassing the connections between the default mode network (DMN) and the frontoparietal network (FPN). The increased structural connections predominantly involved the inter-regional connections between the limbic network (LN) and the DMN, the salience/ventral attention network (SVAN) and FPN, while the decreased structural connections mainly involved connections between the LN and the subcortical network (SN). We also found increased SC-FC coupling in DMN-related brain regions and decoupling in LN-related brain regions in ALS, which could differentiate ALS from HCs with promising capacity based on SVM. Our findings highlight that DMN and LN may play a vital role in the pathophysiological mechanism of ALS. Additionally, SC-FC coupling could be regarded as a promising neuroimaging biomarker for ALS and shows important clinical potential for early recognition of ALS individuals.

12.
Brain Sci ; 13(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36979270

RESUMO

Retinal imaging being a potential biomarker for Alzheimer's disease is gradually attracting the attention of researchers. However, the association between retinal parameters and AD neuroimaging biomarkers, particularly structural changes, is still unclear. In this cross-sectional study, we recruited 25 cognitively impaired (CI) and 21 cognitively normal (CN) individuals. All subjects underwent retinal layer thickness and microvascular measurements with optical coherence tomography angiography (OCTA). Gray matter and white matter (WM) data such as T1-weighted magnetic resonance imaging and diffusion tensor imaging, respectively, were also collected. In addition, hippocampal subfield volumes and WM tract microstructural alterations were investigated as classical AD neuroimaging biomarkers. The microvascular and retinal features and their correlation with brain structural imaging markers were further analyzed. We observed a reduction in vessel density (VD) at the inferior outer (IO) sector (p = 0.049), atrophy in hippocampal subfield volumes, such as the subiculum (p = 0.012), presubiculum (p = 0.015), molecular_layer_HP (p = 0.033), GC-ML-DG (p = 0.043) and whole hippocampus (p = 0.033) in CI patients. Altered microstructural integrity of WM tracts in CI patients was also discovered in the cingulum hippocampal part (CgH). Importantly, we detected significant associations between retinal VD and gray matter volumes of the hippocampal subfield in CI patients. These findings suggested that the retinal microvascular measures acquired by OCTA may be markers for the early prediction of AD-related structural brain changes.

13.
Front Aging Neurosci ; 15: 1117973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967823

RESUMO

Background: The mechanism of gait and balance dysfunction (GBD) in cerebral small vessel disease (CSVD) remains unclear. Evidence supports cognition engages in GBD of CSVD. The cerebellum is important in motor and cognition, while little is known about the influence of the cerebellum on GBD in CSVD. Methods: This study is a retrospective cohort study. All participants of this study were enrolled from the CSVD individuals in Nanjing Drum Tower Hospital from 2017 to 2021. The GBD of CSVD patients was defined as Tinetti Test score ≤ 23. Cerebral cortical thickness, cerebellar gray matter volume, the amplitude of low-frequency fluctuation, functional connectivity, and modular interaction were calculated to determine the cortical atrophy and activity patterns of CSVD patients with GBD. The effect of cognitive domains during GBD in CSVD patients was explored by correlation analyses. Results: A total of 25 CSVD patients were recruited in CSVD patients with GBD group (Tinetti Test score ≤ 23, mean age ± standard deviation: 70.000 ± 6.976 years), and 34 CSVD patients were recruited in CSVD patients without GBD group (Tinetti Test score > 23, mean age ± standard deviation: 64.029 ± 9.453 years). CSVD patients with GBD displayed worse cognitive performance and cortical atrophy in the right cerebellum VIIIa and bilateral superior temporal gyrus than those without GBD. The right postcentral gyrus, left inferior temporal gyrus, right angular gyrus, right supramarginal gyrus and right middle frontal gyrus were functionally overactivated and showed decreased modular interaction with the right cerebellum. Tinetti Test scores were negatively related to the volume of the right cerebellum VIIIa in CSVD patients with GBD. Notably, memory, especially visuospatial memory, was greatly associated with GBD in CSVD. Conclusion: The cortical atrophy and altered functional activity in sensorimotor area and ventral attention network in the cerebellum and cerebrum may underlying the GBD in CSVD. Memory might be critically cognitively responsible for GBD in CSVD.

14.
Hum Brain Mapp ; 44(6): 2365-2379, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36722495

RESUMO

Functional changes of default mode network (DMN) have been proven to be closely associated with white matter hyperintensity (WMH) related cognitive impairment (CI). However, subsystem mechanisms of DMN underlying WMH-related CI remain unclear. The present study recruited WMH patients (n = 206) with mild CI and normal cognition, as well as healthy controls (HC, n = 102). Static/dynamic functional connectivity (FC) of the DMN's three subsystems were calculated using resting-state functional MRI. K-means clustering analyses were performed to extract distinct dynamic connectivity states. Compared with the WMH-NC group, the WMH-MCI group displayed lower static FC within medial temporal lobe (MTL) and core subsystem, between core-MTL subsystem, as well as between core and dorsal medial prefrontal cortex subsystem. All these static alterations were positively associated with information processing speed (IPS). Regarding dynamic FC, the WMH-MCI group exhibited higher dynamic FC within MTL subsystem than the HC and WMH-NC groups. Altered dynamic FC within MTL subsystem mediated the relationship between WMH and memory span (indirect effect: -0.2251, 95% confidence interval [-0.6295, -0.0267]). Additionally, dynamic FCs of DMN subsystems could be clustered into two recurring states. For dynamic FCs within MTL subsystem, WMH-MCI subjects exhibited longer mean dwell time (MDT) and higher reoccurrence fraction (RF) in a sparsely connected state (State 2). Altered MDT and RF in State 2 were negatively associated with IPS. Taken together, these findings indicated static/dynamic FC of DMN subsystems can provide relevant information on cognitive decline from different aspects, which provides a comprehensive view of subsystem mechanisms of DMN underlying WMH-related CI.


Assuntos
Disfunção Cognitiva , Substância Branca , Humanos , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Imageamento por Ressonância Magnética
15.
Behav Brain Res ; 439: 114226, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36436729

RESUMO

Default-mode network (DMN) may be the earliest affected network and is associated with cognitive decline in Alzheimer's disease (AD). Repetitive transcranial magnetic stimulation (rTMS) may help to modulate DMN plasticity. Still, stimulation effects substantially vary across studies and individuals. Global left frontal cortex (gLFC) connectivity, a substitute for reserve capacity, may contribute to the heterogeneous physiological effects of neuro-navigated rTMS. This study investigated the effects of left angular gyrus-navigated rTMS on DMN connectivity in different reserve capacity participants. gLFC connectivity, was computed through resting-state fMRI correlations. Thirty-one prodromal AD patients were divided into low connection group (LCG) and high connection group (HCG) by the median of gLFC connectivity. Distinct reserve capacity impacts on DMN in response to rTMS were identified in these two groups. Then, brain-behavior relationships were examined. gLFC connectivity within a certain range is directly proportional to cognitive reserve ability (i.e., LCG), and the effectiveness of functional connectivity beyond this range decreases (i.e, HCG). Moreover, LCG exhibited increased DMN connectivity and significantly positive memory improvements, while HCG showed a contrary connectivity decline and maintained or slightly improved their cognitive function after neuro-navigated rTMS treatment. The prodromal AD patients with the distinct reserve capacity may benefit differently from left angular gyrus-navigated rTMS, which may lead to increasing attention in defining personalized medicine approach of AD.


Assuntos
Doença de Alzheimer , Estimulação Magnética Transcraniana , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/terapia , Rede de Modo Padrão , Encéfalo , Lobo Parietal/diagnóstico por imagem , Imageamento por Ressonância Magnética
16.
J Neurointerv Surg ; 15(11): 1136-1141, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36446552

RESUMO

BACKGROUND: There is high variability in the clinical outcomes of patients with acute ischemic stroke (AIS) after mechanical thrombectomy (MT). METHODS: 217 consecutive patients with anterior circulation large vessel occlusion who underwent MT between August 2018 and January 2022 were analysed. The primary outcome was functional independence defined as a modified Rankin Scale score of 0-2 at 3 months. In the derivation cohort (August 2018 to December 2020), 7 ensemble ML models were trained on 70% of patients and tested on the remaining 30%. The model's performance was further validated on the temporal validation cohort (January 2021 to January 2022). The SHapley Additive exPlanations (SHAP) framework was applied to interpret the prediction model. RESULTS: Derivation analyses generated a 9-item score (PFCML-MT) comprising age, National Institutes of Health Stroke Scale score, collateral status, and postoperative laboratory indices (albumin-to-globulin ratio, estimated glomerular filtration rate, blood neutrophil count, C-reactive protein, albumin and serum glucose levels). The area under the curve was 0.87 for the test set and 0.84 for the temporal validation cohort. SHAP analysis further determined the thresholds for the top continuous features. This model has been translated into an online calculator that is freely available to the public (https://zhelvyao-123-60-sial5s.streamlitapp.com). CONCLUSIONS: Using ML and readily available features, we developed an ML model that can potentially be used in clinical practice to generate real-time, accurate predictions of the outcome of patients with AIS treated with MT.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/cirurgia , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/cirurgia , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/cirurgia , Resultado do Tratamento , Trombectomia/efeitos adversos , Aprendizado de Máquina , Albuminas/uso terapêutico , Estudos Retrospectivos
17.
Brain Sci ; 12(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36552071

RESUMO

Glymphatic dysfunction has been linked to cognitive decline in several neurodegenerative diseases. In cerebral small vessel disease (CSVD), the mechanism of white matter hyperintensities (WMH)-related cognitive impairment (CI) is still under investigation. The diffusion tensor image (DTI) analysis along the perivascular space (ALPS) method has been considered to be a reliable parameter to evaluate glymphatic function. Therefore, we applied the ALPS-index to determine the influence of glymphatic function on CI in CSVD. In total, 137 CSVD patients (normal cognitive group, mild CI group, and dementia group) and 52 normal controls were included in this study. The ALPS-index was calculated based on the DTI. Correlation analyses and mediation analysis were conducted to examine the relationship between glymphatic function and cognition. Remarkable differences in the ALPS-index were observed between subjects with and without CI. The ALPS-index was negatively correlated with age, WMH volume, and general cognitive function in all CSVD patients. In the mild CI group, the ALPS-index was independently positively related to episodic memory, and mediated the relationship between WMH volume and episodic memory. In conclusion, the ALPS-index is a potential marker for early recognition of CI in CSVD. Glymphatic dysfunction mediates the relationship between WMH and CI in CSVD.

18.
Biomed Res Int ; 2019: 4759060, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396530

RESUMO

INTRODUCTION: Pulp regeneration, as a treatment for pulp necrosis, has significant advantages over root canal therapy for the preservation of living pulp. To date, research on pulp regeneration has mainly focused on the transplantation of pulp stem cells into the root canal, but there is still a lack of research on the migration of pulp cells into the root canal via cell homing. Stem cells from the apical tooth papilla (SCAP) are recognized as multidirectional stem cells, but these cells are difficult to obtain. MicroRNAs are small noncoding RNAs that play crucial roles in regulating normal and pathologic functions. We hypothesized that some types of microRNAs might improve the migration and proliferation function of dental pulp stem cells (DPSCs), which are easily obtained in clinical practice, and as a result, DPSCs might replace SCAP and provide valuable information for regenerative endodontics. METHODS: Magnetic activated cell sorting of DPSCs and SCAP was performed. Next-generation sequencing was performed to examine DPSCs and SCAP miRNAs expression and to identify the most significant differentially expressed miRNA. CCK-8 and transwell assays were used to determine the impact of this miRNA on DPSCs proliferation and migration. RESULTS: The most significant differentially expressed miRNA between DPSCs and SCAP was miR-224-5p. Downregulating miR-224-5p promoted DPSCs proliferation and migration; the opposite results were observed when miR-224-5p was upregulated. CONCLUSION: MiR-224-5p promotes proliferation and migration in DPSCs, a finding that is of great significance for further exploring the role of dental pulp stem cells in regenerative endodontics.


Assuntos
Movimento Celular , Proliferação de Células , Polpa Dentária/metabolismo , Regulação para Baixo , MicroRNAs/biossíntese , Células-Tronco/metabolismo , Adolescente , Adulto , Polpa Dentária/citologia , Feminino , Humanos , Masculino , Células-Tronco/citologia
19.
Eur J Oral Sci ; 127(4): 294-303, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31216106

RESUMO

Dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAPs) are oral mesenchymal stem cells capable of self-renewal and have a potential for multilineage differentiation. Increasing evidence shows that microRNAs (miRNAs) play important roles in stem cell biology. Here, we focused on exploring miR-146a-5p and its relationship to the undifferentiated status of STRO-1+ SCAPs and STRO-1+ DPSCs, as well as its role during STRO-1+ DPSC differentiation and proliferation. Our data indicated that baseline miR-146a-5p expression is significantly lower in STRO-1+ SCAPs than in STRO-1+ DPSCs and increased in the latter during osteogenic induction. Moreover, we identified miR-146a-5p as a key miRNA that promotes osteo/odontogenic differentiation of STRO-1+ DPSCs and attenuates cell proliferation. Additionally, it was observed that STRO-1+ DPSC mineralization results in the downregulation of notch receptor 1 (NOTCH1) and hes family bHLH transcription factor 1 (HES1). Interference with neurogenic locus notch homolog protein 1 (Notch 1) signaling was verified to enhance differentiation and suppress STRO-1+ DPSC proliferation. It was further observed that miR-146a-5p directly targets the 3'-untranslated region (3'-UTR) of NOTCH1 and inhibits expression of both NOTCH1 and HES1mRNAs and Notch 1 and transcription factor HES-1 (HES-1) proteins in STRO-1+ DPSCs. We conclude that miR-146a-5p exerts its regulatory effect on STRO-1+ DPSC differentiation and proliferation partially by suppressing Notch signaling.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , MicroRNAs/genética , Receptor Notch1/genética , Células-Tronco/citologia , Proliferação de Células , Células Cultivadas , Humanos
20.
PeerJ ; 6: e5307, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30128179

RESUMO

Oral squamous cell carcinoma (OSCC) is a major malignant cancer of the head and neck. Long non-coding RNAs (lncRNAs) have emerged as critical regulators during the development and progression of cancers. This study aimed to identify a lncRNA-related signature with prognostic value for evaluating survival outcomes and to explore the underlying molecular mechanisms of OSCC. Associations between overall survival (OS), disease-free survival (DFS) and candidate lncRNAs were evaluated by Kaplan-Meier survival analysis and univariate and multivariate Cox proportional hazards regression analyses. The robustness of the prognostic significance was shown via the Gene Expression Omnibus (GEO) database. A total of 2,493 lncRNAs were differentially expressed between OSCC and control samples (fold change >2, p < 0.05). We used Kaplan-Meier survival analysis to identify 21 lncRNAs for which the expression levels were associated with OS and DFS of OSCC patients (p < 0.05) and found that down-expression of lncRNA AC012456.4 especially contributed to poor DFS (p = 0.00828) and OS (p = 0.00987). Furthermore, decreased expression of AC012456.4 was identified as an independent prognostic risk factor through multivariate Cox proportional hazards regression analyses (DFS: p = 0.004, hazard ratio (HR) = 0.600, 95% confidence interval(CI) [0.423-0.851]; OS: p = 0.002, HR = 0.672, 95% CI [0.523-0.863). Gene Set Enrichment Analysis (GSEA) indicated that lncRNA AC012456.4 were significantly enriched in critical biological functions and pathways and was correlated with tumorigenesis, such as regulation of cell activation, and the JAK-STAT and MAPK signal pathway. Overall, these findings were the first to evidence that AC012456.4 may be an important novel molecular target with great clinical value as a diagnostic, therapeutic and prognostic biomarker for OSCC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA