Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 71(17): 5237-5246, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32369582

RESUMO

The loading and maintenance of centromeric histone 3 (CENH3) at the centromere are critical processes ensuring appropriate kinetochore establishment and equivalent segregation of the homologous chromosomes during cell division. CENH3 loss of function is lethal, whereas mutations in the histone fold domain are tolerated and lead to chromosome instability and chromosome elimination in embryos derived from crosses with wild-type pollen. A wide range of proteins in yeast and animals have been reported to interact with CENH3. The histone fold domain-interacting proteins are potentially alternative targets for the engineering of haploid inducer lines, which may be important when CENH3 mutations are not well supported by a given crop. Here, we provide an overview of the corresponding plant orthologs or functional homologs of CENH3-interacting proteins. We also list putative CENH3 post-translational modifications that are also candidate targets for modulating chromosome stability and inheritance.


Assuntos
Centrômero , Histonas , Animais , Haploidia , Histonas/genética , Plantas/genética , Pólen
2.
Plant J ; 101(1): 71-86, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31463991

RESUMO

Centromeres define the chromosomal position where kinetochores form to link the chromosome to microtubules during mitosis and meiosis. Centromere identity is determined by incorporation of a specific histone H3 variant termed CenH3. As for other histones, escort and deposition of CenH3 must be ensured by histone chaperones, which handle the non-nucleosomal CenH3 pool and replenish CenH3 chromatin in dividing cells. Here, we show that the Arabidopsis orthologue of the mammalian NUCLEAR AUTOANTIGENIC SPERM PROTEIN (NASP) and Schizosaccharomyces pombe histone chaperone Sim3 is a soluble nuclear protein that binds the histone variant CenH3 and affects its abundance at the centromeres. NASPSIM3 is co-expressed with Arabidopsis CenH3 in dividing cells and binds directly to both the N-terminal tail and the histone fold domain of non-nucleosomal CenH3. Reduced NASPSIM3 expression negatively affects CenH3 deposition, identifying NASPSIM3 as a CenH3 histone chaperone.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Histonas/metabolismo , Centrômero/metabolismo , Cinetocoros/metabolismo , Schizosaccharomyces/metabolismo
3.
Methods Mol Biol ; 1669: 77-85, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28936651

RESUMO

Organ- or tissue-specific ploidy level determination is often used for answering biological, molecular, genetic, or evolutionary questions in plant sciences. However, current techniques for ploidy determination either cannot provide information on single cell level, require destructive sample preparation, or are laborious and time-consuming. Here, we present a new approach developed in Arabidopsis thaliana, which is not only less labor intensive but also allows in vivo ploidy determination on single cell level. The technique is based on the incorporation of a transgenic construct, consisting of the centromere-specific protein CENH3 fused to the fluorescent reporter GFP that specifically labels centromeric regions and hence allows for an accurate visual determination of the cell's chromosome number. Moreover, by combining the construct with a gametophyte-specific promoter, the technique enables accurate chromosome quantification in all individual gametophytic cell types formed during micro- and mega-gametogenesis. As such, CENH3-based centromere visualization provides an easy and straightforward method to monitor meiotic cell division integrity, gametophytic chromosome dynamics, and reproductive ploidy stability.


Assuntos
Arabidopsis/metabolismo , Óvulo Vegetal/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Centrômero/metabolismo , Centrômero/fisiologia , Células Germinativas Vegetais/metabolismo , Células Germinativas Vegetais/fisiologia , Meiose/fisiologia , Óvulo Vegetal/fisiologia , Ploidias
4.
BMC Plant Biol ; 16: 1, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728271

RESUMO

BACKGROUND: The in vivo determination of the cell-specific chromosome number provides a valuable tool in several aspects of plant research. However, current techniques to determine the endosystemic ploidy level do not allow non-destructive, cell-specific chromosome quantification. Particularly in the gametophytic cell lineages, which are physically encapsulated in the reproductive organ structures, direct in vivo ploidy determination has been proven very challenging. Using Arabidopsis thaliana as a model, we here assess the applicability of recombinant CENH3-GFP reporters for the labeling of the cell's chromocenters and for the monitoring of the gametophytic and somatic chromosome number in vivo. RESULTS: By modulating expression of a CENH3-GFP reporter cassette using different promoters, we isolated two reporter lines that allow for a clear and highly specific labeling of centromeric chromosome regions in somatic and gametophytic cells respectively. Using polyploid plant series and reproductive mutants, we demonstrate that the pWOX2-CENH3-GFP recombinant fusion protein allows for the determination of the gametophytic chromosome number in both male and female gametophytic cells, and additionally labels centromeric regions in early embryo development. Somatic centromere labeling through p35S-CENH3-GFP shows a maximum of ten centromeric dots in young dividing tissues, reflecting the diploid chromosome number (2x = 10), and reveals a progressive decrease in GFP foci frequency throughout plant development. Moreover, using chemical and genetic induction of endomitosis, we demonstrate that CENH3-mediated chromosome labeling provides an easy and valuable tool for the detection and characterization of endomitotic polyploidization events. CONCLUSIONS: This study demonstrates that the introgression of the pWOX2-CENH3-GFP reporter construct in Arabidopsis thaliana provides an easy and reliable methodology for determining the chromosome number in developing male and female gametes, and during early embryo development. Somatically expressed CENH3-GFP reporters, on the other hand, constitute a valuable tool to quickly determine the basic somatic ploidy level in young seedlings at the individual cell level and to detect and to quantify endomitotic polyploidization events in a non-destructive, microscopy-based manner.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Células Germinativas Vegetais , Histonas/genética , Ploidias , Centrômero , Cromossomos de Plantas , Gametogênese Vegetal , Marcadores Genéticos , Células Germinativas Vegetais/crescimento & desenvolvimento , Proteínas de Fluorescência Verde/genética , Meiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA