Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0291165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682949

RESUMO

Due to their capability for comprehensive sample-to-answer automation, the interest in centrifugal microfluidic systems has greatly increased in industry and academia over the last quarter century. The main applications of these "Lab-on-a-Disc" (LoaD) platforms are in decentralised bioanalytical point-of-use / point-of-care testing. Due to the unidirectional and omnipresent nature of the centrifugal force, advanced flow control is key to coordinate multi-step / multi-reagent assay formats on the LoaD. Formerly, flow control was often achieved by capillary burst valves which require gradual increments of the spin speed of the system-innate spindle motor. Recent advanced introduced a flow control scheme called 'rotational pulse actuated valves'. In these valves the sequence of valve actuation is determined by the architecture of the disc while actuation is triggered by freely programmable upward spike (i.e. Low-High-Low (LHL)) in the rotational frequency. This paradigm shift from conventional 'analogue' burst valves to 'digital' pulsing significantly increases the number of sequential while also improving the overall robustness of flow control. In this work, we expand on these LHL valves by introducing High-Low-High (HLH) pulse-actuated (PA) valving which are actuated by 'downward' spike in the disc spin-rate. These HLH valves are particularly useful for high spin-rate operations such as centrifugation of blood. We introduce two different HLH architectures and then combine the most promising with LHL valves to implement the time-dependent liquid handling protocol underlying a common liver function test panel.


Assuntos
Bradicardia , Taquicardia , Humanos , Frequência Cardíaca , Aceleração , Automação
2.
Sci Rep ; 9(1): 4157, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858536

RESUMO

Cellular activation and inflammation leading to endothelial dysfunction is associated with cardiovascular disease (CVD). We investigated whether a single cell label-free multi parameter optical interrogation system can detect endothelial cell and endothelial progenitor cell (EPC) activation in vitro and ex vivo, respectively. Cultured human endothelial cells were exposed to increasing concentrations of tumour necrosis factor alpha (TNF-α) or lipopolysaccharide (LPS) before endothelial activation was validated using fluorescence-activated cell sorting (FACS) analysis of inflammatory marker expression (PECAM-1, E-selectin and ICAM-1). A centrifugal microfluidic system and V-cup array was used to capture individual cells before optical measurement of light scattering, immunocytofluorescence, auto-fluorescence (AF) and cell morphology was determined. In vitro, TNF-α promoted specific changes to the refractive index and cell morphology of individual cells concomitant with enhanced photon activity of fluorescently labelled inflammatory markers and increased auto-fluorescence (AF) intensity at three different wavelengths, an effect blocked by inhibition of downstream signalling with Iκß. Ex vivo, there was a significant increase in EPC number and AF intensity of individual EPCs from CVD patients concomitant with enhanced PECAM-1 expression when compared to normal controls. This novel label-free 'lab on a disc' (LoaD) platform can successfully detect endothelial activation in response to inflammatory stimuli in vitro and ex vivo.


Assuntos
Citometria de Fluxo/métodos , Células Endoteliais da Veia Umbilical Humana/citologia , Forma Celular , Selectina E/genética , Selectina E/metabolismo , Citometria de Fluxo/instrumentação , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Lipopolissacarídeos/farmacologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
3.
PLoS One ; 11(5): e0155545, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27167376

RESUMO

Here we present retrieval of Peripheral Blood Mononuclear Cells by density-gradient medium based centrifugation for subsequent analysis of the leukocytes on an integrated microfluidic "Lab-on-a-Disc" cartridge. Isolation of white blood cells constitutes a critical sample preparation step for many bioassays. Centrifugo-pneumatic siphon valves are particularly suited for blood processing as they function without need of surface treatment and are 'low-pass', i.e., holding at high centrifugation speeds and opening upon reduction of the spin rate. Both 'hydrostatically' and 'hydrodynamically' triggered centrifugo-pneumatic siphon valving schemes are presented. Firstly, the geometry of the pneumatic chamber of hydrostatically primed centrifugo-pneumatic siphon valves is optimised to enable smooth and uniform layering of blood on top of the density-gradient medium; this feature proves to be key for efficient Peripheral Blood Mononuclear Cell extraction. A theoretical analysis of hydrostatically primed valves is also presented which determines the optimum priming pressure for the individual valves. Next, 'dual siphon' configurations for both hydrostatically and hydrodynamically primed centrifugo-pneumatic siphon valves are introduced; here plasma and Peripheral Blood Mononuclear Cells are extracted through a distinct siphon valve. This work represents a first step towards enabling on disc multi-parameter analysis. Finally, the efficiency of Peripheral Blood Mononuclear Cells extraction in these structures is characterised using a simplified design. A microfluidic mechanism, which we termed phase switching, is identified which affects the efficiency of Peripheral Blood Mononuclear Cell extraction.


Assuntos
Centrifugação Isopícnica/instrumentação , Desenho de Equipamento , Leucócitos Mononucleares/química , Técnicas Analíticas Microfluídicas/instrumentação , Bioensaio/instrumentação , Bioensaio/métodos , Centrifugação Isopícnica/métodos , Humanos , Hidrodinâmica , Técnicas Analíticas Microfluídicas/métodos , Pressão
4.
Lab Chip ; 14(13): 2249-58, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24811251

RESUMO

The centrifugal "lab-on-a-disc" concept has proven to have great potential for process integration of bioanalytical assays, in particular where ease-of-use, ruggedness, portability, fast turn-around time and cost efficiency are of paramount importance. Yet, as all liquids residing on the disc are exposed to the same centrifugal field, an inherent challenge of these systems remains the automation of multi-step, multi-liquid sample processing and subsequent detection. In order to orchestrate the underlying bioanalytical protocols, an ample palette of rotationally and externally actuated valving schemes has been developed. While excelling with the level of flow control, externally actuated valves require interaction with peripheral instrumentation, thus compromising the conceptual simplicity of the centrifugal platform. In turn, for rotationally controlled schemes, such as common capillary burst valves, typical manufacturing tolerances tend to limit the number of consecutive laboratory unit operations (LUOs) that can be automated on a single disc. In this paper, a major advancement on recently established dissolvable film (DF) valving is presented; for the very first time, a liquid handling sequence can be controlled in response to completion of preceding liquid transfer event, i.e. completely independent of external stimulus or changes in speed of disc rotation. The basic, event-triggered valve configuration is further adapted to leverage conditional, large-scale process integration. First, we demonstrate a fluidic network on a disc encompassing 10 discrete valving steps including logical relationships such as an AND-conditional as well as serial and parallel flow control. Then we present a disc which is capable of implementing common laboratory unit operations such as metering and selective routing of flows. Finally, as a pilot study, these functions are integrated on a single disc to automate a common, multi-step lab protocol for the extraction of total RNA from mammalian cell homogenate.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Modelos Teóricos , Centrifugação/instrumentação , Centrifugação/métodos , Reologia
5.
Circulation ; 124(11 Suppl): S168-73, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21911808

RESUMO

BACKGROUND: The sequelae of aortic root dilation are the lethal consequences of Marfan syndrome. The root dilation is attributable to an imbalance between deposition of matrix elements and metalloproteinases in the aortic medial layer as a result of excessive transforming growth factor-beta signaling. This study examined the efficacy and mechanism of statins in attenuating aortic root dilation in Marfan syndrome and compared effects to the other main proposed preventative agent, losartan. METHODS AND RESULTS: Marfan mice heterozygous for a mutant allele encoding a cysteine substitution in fibrillin-1 (C1039G) were treated daily from 6 weeks old with pravastatin 0.5 g/L or losartan 0.6 g/L. The end points of aortic root diameter (n=25), aortic thickness, and architecture (n=10), elastin volume (n=5), dp/dtmax (maximal rate of change of pressure) (cardiac catheter; n=20), and ultrastructural analysis with stereology (electron microscopy; n=5) were examined. The aortic root diameters of untreated Marfan mice were significantly increased in comparison to normal mice (0.161 ± 0.001 cm vs 0.252 ± 0.004 cm; P<0.01). Pravastatin (0.22 ± 0.003 cm; P<0.01) and losartan (0.221 ± 0.004 cm; P<0.01) produced a significant reduction in aortic root dilation. Both drugs also preserved elastin volume within the medial layer (pravastatin 0.23 ± 0.02 and losartan 0.29 ± 0.03 vs untreated Marfan 0.19 ± 0.02; P=0.01; normal mice 0.27 ± 0.02). Ultrastructural analysis showed a reduction of rough endoplasmic reticulum in smooth muscle cells with pravastatin (0.022 ± 0.004) and losartan (0.013 ± 0.001) compared to untreated Marfan mice (0.035 ± 0.004; P<0.01). CONCLUSIONS: Statins are similar to losartan in attenuating aortic root dilation in a mouse model of Marfan syndrome. They appear to act through reducing the excessive protein manufacture by vascular smooth muscle cells, which occurs in the Marfan aorta. As a drug that is relatively well-tolerated for long-term use, it may be useful clinically.


Assuntos
Doenças da Aorta/etiologia , Doenças da Aorta/prevenção & controle , Dilatação Patológica/etiologia , Dilatação Patológica/prevenção & controle , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Síndrome de Marfan/complicações , Pravastatina/uso terapêutico , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/metabolismo , Dilatação Patológica/metabolismo , Modelos Animais de Doenças , Elastina/metabolismo , Retículo Endoplasmático/ultraestrutura , Losartan/uso terapêutico , Masculino , Camundongos , Camundongos Mutantes , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/ultraestrutura , Resultado do Tratamento , Túnica Média/metabolismo , Túnica Média/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA