Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Analyst ; 146(20): 6335-6336, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34549733

RESUMO

Correction for 'Surface enhanced Raman scattering for the multiplexed detection of pathogenic microorganisms: towards point-of-use applications' by Matthew E. Berry et al., Analyst, 2021, DOI: 10.1039/D1AN00865J.

2.
Analyst ; 146(20): 6084-6101, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34492668

RESUMO

Surface enhanced Raman scattering (SERS) is a technique that demonstrates a number of advantages for the rapid, specific and sensitive detection of pathogenic microorganisms. In this review, an overview of label-free and label-based SERS approaches, including microfluidics, nucleic acid detection and immunoassays, for the multiplexed detection of pathogenic bacteria and viruses from the last decade will be discussed, as well as their transition into promising point-of-use detection technologies in industrial and medical settings.


Assuntos
Microfluídica , Análise Espectral Raman , Bactérias , Imunoensaio
3.
Anal Chem ; 89(23): 12666-12673, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985467

RESUMO

Successful pathogen detection is crucial for public health as the threat of infectious disease is dramatically increasing globally due to bacteria developing resistance to many antimicrobial drugs. The increase in bacterial infections has led to urgent demands for simpler, faster, and more reliable detection methods to be developed allowing the most appropriate therapy to be provided. Surface enhanced Raman scattering (SERS) is an analytical technique which has gained a great deal of interest for biosensing due to its sensitivity, selectivity, and multiplexing capabilities. A new bionanosensor has been developed for the isolation and detection of multiple bacterial pathogens via magnetic separation and SERS. This novel assay format involves using lectin functionalized magnetic nanoparticles for capture and isolation of bacteria from the sample matrix followed by specifically detecting bacterial pathogens using SERS active nanoparticles functionalized with antibodies which are strain specific. Therefore, the sample is captured using a "magnetic plug" and interrogated with a laser allowing simple and fast optical detection. Three bacterial pathogens (Escherichia coli, Salmonella typhimurium, and methicillin-resistant Staphylococcus aureus) were successfully isolated and detected, with the lowest concentration for each of the strains detected at just 101 colony forming units per mL (CFU/mL). In addition to single pathogen detection, a mixture of all three bacterial strains was isolated and identified within the same sample matrix using SERS with the triplex detection also being confirmed using principal component analysis. Herein, we demonstrate that this multiplexed bionanosensor is capable of providing rapid and sensitive discrimination of bacterial pathogens both individually, and within a multiplex system, offering opportunities for future point of care devices and advancements in biomedical applications.


Assuntos
Escherichia coli/isolamento & purificação , Nanopartículas Metálicas/química , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Salmonella typhimurium/isolamento & purificação , Análise Espectral Raman/métodos , Concanavalina A/química , Farmacorresistência Bacteriana , Escherichia coli/química , Limite de Detecção , Fenômenos Magnéticos , Staphylococcus aureus Resistente à Meticilina/química , Salmonella typhimurium/química , Prata/química
4.
Inorg Chem ; 56(17): 10181-10194, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28809116

RESUMO

Ten organoimido polyoxometalate (POM)-based chromophores have been synthesized and studied by hyper-Rayleigh scattering (HRS), Stark and Resonance Raman spectroscopies, and density functional theory (DFT) calculations. HRS ß0 values for chromophores with resonance electron donors are significant (up to 139 × 10-30 esu, ∼5 times greater than that of the DAS+ cation), but systems with no donor, or the -NO2 acceptor show no activity, in some cases, despite large DFT-predicted ß-values. In active systems with short (phenyl) π-bridges, ß0 values comfortably exceed that of the purely organic structural analogue N,N-dimethyl-4-nitroaniline (DMPNA), and intrinsic ß-values, ß0/N3/2 (where N is the number of bridge π-electrons) thus appear to break empirical performance limits (ß0/N3/2 vs λmax) for planar organic systems. However, ß0 values obtained for extended systems with a diphenylacetylene bridge are comparable to or lower than that of their nitro analogue, N,N-dimethyl-4-[(4-nitrophenyl)ethynyl]-aniline (DMNPEA). Resonance Raman spectroscopy confirms the involvement of the POM in the electronic transitions, whether donor groups are present or not, but Stark spectroscopy indicates that, in their absence, the transitions have little dipolar character (hence, NLO inactive), consistent with DFT-calculated frontier orbitals, which extend over both POM and organic group. Stark and DFT also suggest that ß is enhanced in the short compounds because the extension of charge transfer (CT) onto the POM increases changes in the excited-state dipole moment. With extended π-systems, this effect does not increase CT distances, relative to a -NO2 acceptor, so ß0 values do not exceed that of DMNPEA. Overall, our results show that (i) the organoimido-POM unit is an efficient acceptor for second-order NLO, but an ineffective donor; (ii) the nature of electronic transitions in arylimido-POMs is strongly influenced by the substituents of the aryl group; and (iii) organoimido-POMs outperform organic acceptors with short π-bridges, but lose their advantage with extended π-conjugation.

5.
R Soc Open Sci ; 4(7): 170422, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28791168

RESUMO

This is the first report of the use of a hand-held 1064 nm Raman spectrometer combined with red-shifted surface-enhanced Raman scattering (SERS) nanotags to provide an unprecedented performance in the short-wave infrared (SWIR) region. A library consisting of 17 chalcogenopyrylium nanotags produce extraordinary SERS responses with femtomolar detection limits being obtained using the portable instrument. This is well beyond previous SERS detection limits at this far red-shifted wavelength and opens up new options for SERS sensors in the SWIR region of the electromagnetic spectrum (between 950 and 1700 nm).

6.
Analyst ; 141(17): 5062-5, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26788554

RESUMO

Chalcogenopyrylium nanotags demonstrate an unprecedented SERS performance with a retina safe, 1550 nm laser excitation. These unique nanotags consisting of chalcogenopyrylium dyes and 100 nm gold nanoparticles produce exceptional SERS signals with picomolar detection limits obtained at this extremely red-shifted and eye-safe laser excitation.

7.
Chem Sci ; 6(4): 2302-2306, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29308144

RESUMO

Surfaced enhanced Raman scattering (SERS) nanotags operating with 1280 nm excitation were constructed from reporter molecules selected from a library of 14 chalcogenopyrylium dyes containing phenyl, 2-thienyl, and 2-selenophenyl substituents and a surface of hollow gold nanoshells (HGNs). These 1280 SERS nanotags are unique as they have multiple chalcogen atoms available which allow them to adsorb strongly onto the gold surface of the HGN thus producing exceptional SERS signals at this long excitation wavelength. Picomolar limits of detection (LOD) were observed and individual reporters of the library were identified by principal component analysis and classified according to their unique structure and SERS spectra.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA