Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 104: 105156, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38768529

RESUMO

BACKGROUND: Kabuki syndrome (KS) is a genetic disorder caused by DNA mutations in KMT2D, a lysine methyltransferase that methylates histones and other proteins, and therefore modifies chromatin structure and subsequent gene expression. Ketones, derived from the ketogenic diet, are histone deacetylase inhibitors that can 'open' chromatin and encourage gene expression. Preclinical studies have shown that the ketogenic diet rescues hippocampal memory neurogenesis in mice with KS via the epigenetic effects of ketones. METHODS: Single-cell RNA sequencing and mass spectrometry-based proteomics were used to explore molecular mechanisms of disease in individuals with KS (n = 4) versus controls (n = 4). FINDINGS: Pathway enrichment analysis indicated that loss of function mutations in KMT2D are associated with ribosomal protein dysregulation at an RNA and protein level in individuals with KS (FDR <0.05). Cellular proteomics also identified immune dysregulation and increased abundance of other lysine modification and histone binding proteins, representing a potential compensatory mechanism. A 12-year-old boy with KS, suffering from recurrent episodes of cognitive decline, exhibited improved cognitive function and neuropsychological assessment performance after 12 months on the ketogenic diet, with concomitant improvement in transcriptomic ribosomal protein dysregulation. INTERPRETATION: Our data reveals that lysine methyltransferase deficiency is associated with ribosomal protein dysfunction, with secondary immune dysregulation. Diet and the production of bioactive molecules such as ketone bodies serve as a significant environmental factor that can induce epigenetic changes and improve clinical outcomes. Integrating transcriptomic, proteomic, and clinical data can define mechanisms of disease and treatment effects in individuals with neurodevelopmental disorders. FUNDING: This study was supported by the Dale NHMRC Investigator Grant (APP1193648) (R.D), Petre Foundation (R.D), and The Sydney Children's Hospital Foundation/Kids Research Early and Mid-Career Researcher Grant (E.T).

2.
Cells ; 12(18)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37759539

RESUMO

Immune cells play a critical role in promoting neuroinflammation and the development of neuropathic pain. However, some subsets of immune cells are essential for pain resolution. Among them are regulatory T cells (Tregs), a specialised subpopulation of T cells that limit excessive immune responses and preserve immune homeostasis. In this study, we utilised intrathecal adoptive transfer of activated Tregs in male and female mice after peripheral nerve injury to investigate Treg migration and whether Treg-mediated suppression of pain behaviours is associated with changes in peripheral immune cell populations in lymphoid and meningeal tissues and spinal microglial and astrocyte reactivity and phenotypes. Treatment with Tregs suppressed mechanical pain hypersensitivity and improved changes in exploratory behaviours after chronic constriction injury (CCI) of the sciatic nerve in both male and female mice. The injected Treg cells were detected in the choroid plexus and the pia mater and in peripheral lymphoid organs in both male and female recipient mice. Nonetheless, Treg treatment resulted in differential changes in meningeal and lymph node immune cell profiles in male and female mice. Moreover, in male mice, adoptive transfer of Tregs ameliorated the CCI-induced increase in microglia reactivity and inflammatory phenotypic shift, increasing M2-like phenotypic markers and attenuating astrocyte reactivity and neurotoxic astrocytes. Contrastingly, in CCI female mice, Treg injection increased astrocyte reactivity and neuroprotective astrocytes. These findings show that the adoptive transfer of Tregs modulates meningeal and peripheral immunity, as well as spinal glial populations, and alleviates neuropathic pain, potentially through different mechanisms in males and females.


Assuntos
Neuralgia , Linfócitos T Reguladores , Camundongos , Masculino , Feminino , Animais , Hiperalgesia/patologia , Neuralgia/terapia , Neuralgia/patologia , Medula Espinal/patologia , Meninges
3.
EBioMedicine ; 91: 104589, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37119734

RESUMO

BACKGROUND: Defining the presence of acute and chronic brain inflammation remains a challenge to clinicians due to the heterogeneity of clinical presentations and aetiologies. However, defining the presence of neuroinflammation, and monitoring the effects of therapy is important given its reversible and potentially damaging nature. We investigated the utility of CSF metabolites in the diagnosis of primary neuroinflammatory disorders such as encephalitis and explored the potential pathogenic role of inflammation in epilepsy. METHODS: Cerebrospinal fluid (CSF) collected from 341 paediatric patients (169 males, median age 5.8 years, range 0.1-17.1) were examined. The patients were separated into a primary inflammatory disorder group (n = 90) and epilepsy group (n = 80), who were compared with three control groups including neurogenetic and structural (n = 76), neurodevelopmental disorders, psychiatric and functional neurological disorders (n = 63), and headache (n = 32). FINDINGS: There were statistically significant increases of CSF neopterin, kynurenine, quinolinic acid and kynurenine/tryptophan ratio (KYN/TRP) in the inflammation group compared to all control groups (all p < 0.0003). As biomarkers, at thresholds with 95% specificity, CSF neopterin had the best sensitivity for defining neuroinflammation (82%, CI 73-89), then quinolinic acid (57%, CI 47-67), KYN/TRP ratio (47%, CI 36-56) and kynurenine (37%, CI 28-48). CSF pleocytosis had sensitivity of 53%, CI 42-64). The area under the receiver operating characteristic curve (ROC AUC) of CSF neopterin (94.4% CI 91.0-97.7%) was superior to that of CSF pleocytosis (84.9% CI 79.5-90.4%) (p = 0.005). CSF kynurenic acid/kynurenine ratio (KYNA/KYN) was statistically decreased in the epilepsy group compared to all control groups (all p ≤ 0.0003), which was evident in most epilepsy subgroups. INTERPRETATION: Here we show that CSF neopterin, kynurenine, quinolinic acid and KYN/TRP are useful diagnostic and monitoring biomarkers of neuroinflammation. These findings provide biological insights into the role of inflammatory metabolism in neurological disorders and provide diagnostic and therapeutic opportunities for improved management of neurological diseases. FUNDING: Financial support for the study was granted by Dale NHMRC Investigator grant APP1193648, University of Sydney, Petre Foundation, Cerebral Palsy Alliance and Department of Biochemistry at the Children's Hospital at Westmead. Prof Guillemin is funded by NHMRC Investigator grant APP 1176660 and Macquarie University.


Assuntos
Doenças do Sistema Nervoso , Triptofano , Masculino , Humanos , Criança , Lactente , Pré-Escolar , Adolescente , Triptofano/metabolismo , Cinurenina , Neopterina/metabolismo , Ácido Quinolínico/líquido cefalorraquidiano , Doenças Neuroinflamatórias , Leucocitose , Inflamação/diagnóstico , Inflamação/metabolismo , Biomarcadores/metabolismo
4.
Pain ; 163(1): 110-124, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34224494

RESUMO

ABSTRACT: A modern approach for cancer treatment is the use of immunotherapy, and particularly immune checkpoint inhibitors, such as anti-programmed cell death protein 1 (PD-1), alone and in combination with chemotherapy. The PD-1 pathway plays a crucial role in inhibiting immune responses and recently has been shown to modulate neuronal activity. However, the impact of PD-1 blockade on the development of chemotherapy-induced peripheral neuropathy is currently unknown. In this study, we show that C57BL/6 mice treated with the chemotherapeutic drug paclitaxel or cotherapy (paclitaxel and anti-PD-1), but not with anti-PD-1 alone, exhibited increased mechanical sensitivity of the hind paw. Both chemotherapy and immunotherapy caused a reduction in neurite outgrowth of dorsal root ganglion (DRG) explants derived from treated mice, whereas only paclitaxel reduced the neurite outgrowth after direct in vitro treatment. Mice treated with anti-PD-1 or cotherapy exhibited distinct T-cell changes in the lymph nodes and increased T-cell infiltration into the DRG. Mice treated with paclitaxel or cotherapy had increased macrophage presence in the DRG, and all treated groups presented an altered expression of microglia markers in the dorsal horn of the spinal cord. We conclude that combining anti-PD-1 immunotherapy with paclitaxel does not increase the severity of paclitaxel-induced peripheral neuropathy. However, because anti-PD-1 treatment caused significant changes in DRG and spinal cord immunity, caution is warranted when considering immune checkpoint inhibitors therapy in patients with a high risk of developing neuropathy.


Assuntos
Doenças do Sistema Nervoso Periférico , Receptor de Morte Celular Programada 1 , Animais , Gânglios Espinais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Paclitaxel/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente
5.
Front Neurosci ; 16: 1039379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704001

RESUMO

Mental health and neurodevelopmental disorders are extremely common across the lifespan and are characterized by a complicated range of symptoms that affect wellbeing. There are relatively few drugs available that target disease mechanisms for any of these disorders. Instead, therapeutics are focused on symptoms and syndromes, largely driven by neurotransmitter hypotheses, such as serotonin or dopamine hypotheses of depression. Emerging evidence suggests that maternal inflammation during pregnancy plays a key role in neurodevelopmental disorders, and inflammation can influence mental health expression across the lifespan. It is now recognized that commonly used psychiatric drugs (anti-depressants, anti-psychotics, and mood stabilizers) have anti-inflammatory properties. In this review, we bring together the human evidence regarding the anti-inflammatory mechanisms for these main classes of psychiatric drugs across a broad range of mental health disorders. All three classes of drugs showed evidence of decreasing levels of pro-inflammatory cytokines, particularly IL-6 and TNF-α, while increasing the levels of the anti-inflammatory cytokine, IL-10. Some studies also showed evidence of reduced inflammatory signaling via nuclear factor- (NF-)κB and signal transducer and activator of transcription (STAT) pathways. As researchers, clinicians, and patients become increasingly aware of the role of inflammation in brain health, it is reassuring that these psychiatric drugs may also abrogate this inflammation, in addition to their effects on neurotransmission. Further studies are required to determine whether inflammation is a driver of disease pathogenesis, and therefore should be a therapeutic target in future clinical trials.

6.
Muscle Nerve ; 64(2): 225-234, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34036599

RESUMO

INTRODUCTION/AIMS: Clinically, the chemotherapeutic agent oxaliplatin can cause peripheral neuropathy, impaired balance, and muscle wastage. Using a preclinical model, we investigated whether exercise intervention could improve these adverse conditions. METHODS: Mice were chronically treated with oxaliplatin alone or in conjunction with exercise. Behavioral studies, including mechanical allodynia, rotarod, open-field, and grip-strength tests, were performed. After euthanasia, multiple organs and four different muscle types were dissected and weighed. The cross-sectional area (CSA) of muscle fibers in the gastrocnemius muscle was assessed and gene expression analysis performed on the forelimb triceps muscle. RESULTS: Oxaliplatin-treated mice displayed reduced weight gain, mechanical allodynia, and exploratory behavior deficits that were not significantly improved by exercise. Oxaliplatin-treated exercised mice showed modest evidence of reduced muscle wastage compared with mice treated with oxaliplatin alone, and exercised mice demonstrated evidence of a mild increase in CSA of muscle fibers. DISCUSSION: Exercise intervention did not improve signs of peripheral neuropathy but moderately reduced the negative impact of oxaliplatin chemotherapy related to muscle morphology, suggesting the potential for exploring the impact of exercise on reducing oxaliplatin-induced neuromuscular toxicity in cancer patients.


Assuntos
Hiperalgesia/terapia , Doenças do Sistema Nervoso Periférico/terapia , Condicionamento Físico Animal/fisiologia , Animais , Antineoplásicos/farmacologia , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Oxaliplatina/farmacologia , Limiar da Dor/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/induzido quimicamente
7.
J Peripher Nerv Syst ; 26(1): 99-112, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33432642

RESUMO

Peripheral nerve injuries caused by focal constriction are characterised by local nerve ischaemia, axonal degeneration, demyelination, and neuroinflammation. The aim of this study was to understand temporal changes in the excitability properties of injured motor axons in a mouse model of nerve constriction injury (NCI). The excitability of motor axons following unilateral sciatic NCI was studied in male C57BL/6J mice distal to the site of injury at the acute (6 hours-1 week) and chronic (up to 20 weeks) phases of injury, using threshold tracking. Multiple measures of nerve excitability, including strength-duration properties, threshold electrotonus, current-threshold relationship, and recovery cycle were examined using the automated nerve excitability protocol (TRONDNF). Acutely, injured motor axons developed a pattern of excitability characteristic of ischemic depolarisation. In most cases, the sciatic nerve became transiently inexcitable. When a liminal compound muscle action potential could again be recorded, it had an increase in threshold and latency, compared to both pre-injury baseline and sham-injured groups. These axons showed a greater threshold change in response to hyperpolarising threshold electrotonus and a significant upward shift in the recovery cycle. Mathematical modelling suggested that the changes seen in chronically injured axons involve shortened internodes, reduced myelination, and exposed juxtaparanodal fast K+ conductances. The findings of this study demonstrate long-term changes in motor excitability following NCI (involving alterations in axonal properties and ion channel activity) and are important for understanding the mechanisms of neurapraxic injuries and traumatic mononeuropathies.


Assuntos
Axônios/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Neurônios Motores/fisiologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Nervo Isquiático/fisiopatologia , Animais , Constrição , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Nervo Isquiático/lesões
8.
PLoS One ; 15(9): e0238164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32877416

RESUMO

PURPOSE: Haematological toxicities occur in patients receiving oxaliplatin. Mild anaemia (grade 1-2) is a common side effect and approximately 90% of recipients develop measurable spleen enlargement. Although generally asymptomatic, oxaliplatin-induced splenomegaly is independently associated with complications following liver resection for colorectal liver metastasis and separately with poorer patient outcomes. Here, we investigated oxaliplatin-induced haematological toxicities and splenomegaly in mice treated with escalating dosages comparable to those prescribed to colorectal cancer patients. METHODS: Blood was analysed, and smears assessed using Wright-Giemsa staining. Paw coloration was quantified as a marker of anaemia. Spleen weight and morphology were assessed for abnormalities relating to splenomegaly and a flow cytometry and multiplex cytokine array assessment was performed on splenocytes. The liver was assessed for sinusoidal obstructive syndrome. RESULTS: Blood analysis showed dose dependent decreases in white and red blood cell counts, and significant changes in haematological indices. Front and hind paws exhibited dose dependent and dramatic discoloration indicative of anaemia. Spleen weight was significantly increased indicating splenomegaly, and red pulp tissue exhibited substantial dysplasia. Cytokines and chemokines within the spleen were significantly affected with temporal upregulation of IL-6, IL-1α and G-CSF and downregulation of IL-1ß, IL-12p40, MIP-1ß, IL-2 and RANTES. Flow cytometric analysis demonstrated alterations in splenocyte populations, including a significant reduction in CD45+ cells. Histological staining of the liver showed no evidence of sinusoidal obstructive syndrome but there were signs suggestive of extramedullary haematopoiesis. CONCLUSION: Chronic oxaliplatin treatment dose dependently induced haematological toxicity and splenomegaly characterised by numerous physiological and morphological changes, which occurred independently of sinusoidal obstructive syndrome.


Assuntos
Testes Hematológicos , Oxaliplatina/efeitos adversos , Esplenomegalia/induzido quimicamente , Animais , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Fenótipo , Baço/efeitos dos fármacos , Baço/patologia , Esplenomegalia/metabolismo , Esplenomegalia/patologia , Fatores de Tempo
10.
J Neurosci ; 39(12): 2326-2346, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30651334

RESUMO

Sensory problems such as neuropathic pain are common and debilitating symptoms in multiple sclerosis (MS), an autoimmune inflammatory disorder of the CNS. Regulatory T (Treg) cells are critical for maintaining immune homeostasis, but their role in MS-associated pain remains unknown. Here, we demonstrate that Treg cell ablation is sufficient to trigger experimental autoimmune encephalomyelitis (EAE) and facial allodynia in immunized female mice. In EAE-induced female mice, adoptive transfer of Treg cells and spinal delivery of the Treg cell cytokine interleukin-35 (IL-35) significantly reduced facial stimulus-evoked pain and spontaneous pain independent of disease severity and increased myelination of the facial nociceptive pathway. The effects of intrathecal IL-35 therapy were Treg-cell dependent and associated with upregulated IL-10 expression in CNS-infiltrating lymphocytes and reduced monocyte infiltration in the trigeminal afferent pathway. We present evidence for a beneficial role of Treg cells and IL-35 in attenuating pain associated with EAE independently of motor symptoms by decreasing neuroinflammation and increasing myelination.SIGNIFICANCE STATEMENT Pain is a highly prevalent symptom affecting the majority of multiple sclerosis (MS) patients and dramatically affects overall health-related quality of life; however, this is a research area that has been largely ignored. Here, we identify for the first time a role for regulatory T (Treg) cells and interleukin-35 (IL-35) in suppressing facial allodynia and facial grimacing in animals with experimental autoimmune encephalomyelitis (EAE). We demonstrate that spinal delivery of Treg cells and IL-35 reduces pain associated with EAE by decreasing neuroinflammation and increasing myelination independently of motor symptoms. These findings increase our understanding of the mechanisms underlying pain in EAE and suggest potential treatment strategies for pain relief in MS.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Interleucinas/imunologia , Neuralgia/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Encefalomielite Autoimune Experimental/complicações , Feminino , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/imunologia , Interleucina-10/imunologia , Interleucinas/administração & dosagem , Camundongos Endogâmicos C57BL , Neuralgia/tratamento farmacológico , Neuralgia/etiologia
11.
J Neurosci Res ; 96(6): 951-968, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28488363

RESUMO

Regulatory T (Treg) cells are a special subpopulation of immunosuppressive T cells that are essential for sustaining immune homeostasis. They maintain self-tolerance, inhibit autoimmunity, and act as critical negative regulators of inflammation in various pathological states including autoimmunity, injury, and degeneration of the nervous system. Treg cells are known to convey both beneficial and detrimental influences in certain disease contexts, and accumulating research suggests that their action may be altered in a range of peripheral and central nervous system pathologies. In this review, we discuss emerging evidence for the dichotomous role of Treg cells in various neurological pathologies including multiple sclerosis, Guillain-Barré syndrome, neuropathic pain, traumatic central nervous system injury, stroke, and neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease. We are in the early stages of uncovering the role of Treg cells in these conditions, and a better understanding of the ways in which these cells operate in the nervous system will enable us to develop novel therapeutic interventions.


Assuntos
Doenças do Sistema Nervoso Central/imunologia , Linfócitos T Reguladores/imunologia , Animais , Doenças do Sistema Nervoso Central/patologia , Humanos , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Linfócitos T Reguladores/patologia
12.
Exp Neurol ; 300: 1-12, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29055716

RESUMO

Connexin43 (Cx43) hemichannels in spinal cord astrocytes are implicated in the maintenance of neuropathic pain following peripheral nerve injury. Peptide5 is a Cx43 mimetic peptide that blocks hemichannels. In this study, we investigated the effects of spinal delivery of Peptide5 on mechanical pain hypersensitivity in two mouse models of neuropathic pain, peripheral nerve injury and chemotherapy-induced peripheral neuropathy (CIPN). We demonstrated that 10days following a chronic constriction injury (CCI) of the sciatic nerve, Cx43 expression, co-localised predominantly with astrocytes, was increased in the ipsilateral L3-L5 lumbar spinal cord. An intrathecal injection of Peptide5 into nerve-injured mice, on day 10 when pain was well-established, caused significant improvement in mechanical pain hypersensitivity 8h after injection. Peptide5 treatment resulted in significantly reduced Cx43, and microglial and astrocyte activity in the dorsal horn of the spinal cord, as compared to control saline-treated CCI mice. Further in vitro investigations on primary astrocyte cultures showed that 1h pre-treatment with Peptide5 significantly reduced adenosine triphosphate (ATP) release in response to extracellular calcium depletion. Since ATP is a known activator of the NOD-like receptor protein 3 (NLRP3) inflammasome complex, a key mediator of neuroinflammation, we examined the effects of Peptide5 treatment on NLRP3 inflammasome expression. We found that NLRP3, its adaptor apoptosis-associated spec-like protein (ASC) and caspase-1 protein were increased in the ipsilateral spinal cord of CCI mice and reduced to naïve levels following Peptide5 treatment. In the models of oxaliplatin- and paclitaxel-induced peripheral neuropathy, treatment with Peptide5 had no effect on mechanical pain hypersensitivity. Interestingly, in these CIPN models, although spinal Cx43 expression was significantly increased at day 13 following chemotherapy, NLRP3 expression was not altered. These results suggest that the analgesic effect of Peptide5 is specifically achieved by reducing NLRP3 expression. Together, our findings demonstrate that blocking Cx43 hemichannels with Peptide5 after nerve injury attenuates mechanical pain hypersensitivity by specifically targeting the NLRP3 inflammasome in the spinal cord.


Assuntos
Materiais Biomiméticos/administração & dosagem , Conexina 43/administração & dosagem , Hiperalgesia/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Neuralgia/tratamento farmacológico , Fragmentos de Peptídeos/administração & dosagem , Animais , Hiperalgesia/metabolismo , Inflamassomos/antagonistas & inibidores , Inflamassomos/metabolismo , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuralgia/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA