Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 24(12): 1048-1056, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29058708

RESUMO

Histones are highly covalently modified, but the functions of many of these modifications remain unknown. In particular, it is unclear how histone marks are coupled to cellular metabolism and how this coupling affects chromatin architecture. We identified histone H3 Lys14 (H3K14) as a site of propionylation and butyrylation in vivo and carried out the first systematic characterization of histone propionylation. We found that H3K14pr and H3K14bu are deposited by histone acetyltransferases, are preferentially enriched at promoters of active genes and are recognized by acylation-state-specific reader proteins. In agreement with these findings, propionyl-CoA was able to stimulate transcription in an in vitro transcription system. Notably, genome-wide H3 acylation profiles were redefined following changes to the metabolic state, and deletion of the metabolic enzyme propionyl-CoA carboxylase altered global histone propionylation levels. We propose that histone propionylation, acetylation and butyrylation may act in combination to promote high transcriptional output and to couple cellular metabolism with chromatin structure and function.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Transcrição Gênica/genética , Acetilação , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Histona Acetiltransferases/metabolismo , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos C57BL , Domínios Proteicos , Células RAW 264.7 , Interferência de RNA , RNA Interferente Pequeno/genética
2.
FEBS J ; 282(9): 1658-74, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25220185

RESUMO

N-terminal tails of histones are easily accessible outside of the nucleosomal core particle and post-translational modifications (PTMs) of these tails have been the focus of attention in the past 15-20 years. By recruiting (or excluding) specific readers, histone modifications can regulate chromatin dynamics and, by extension, DNA-dependent processes. However, until very recently, the direct impact of histone PTMs on nucleosome structure and thus on chromatin function has remained somewhat elusive. Recent findings of novel sites and types of histone PTMs located within the globular domain of histones and, in particular, on the lateral surface of the histone octamer have changed this. As a result of their structurally important location in close proximity to the DNA molecule, this new class of histone PTMs can have a direct impact on chromatin function. Depending on their precise position at the nucleosome lateral surface (e.g. near the DNA entry/exit sites or in the dyad region), histone PTMs can regulate nucleosome structure and/or stability differently. We review recent progress on how histone PTMs can influence DNA unwrapping and/or nucleosome disassembly and shed light on how these types of novel modifications contribute mechanistically to the regulation of transcriptional activity.


Assuntos
Regulação da Expressão Gênica , Histonas/metabolismo , Transcrição Gênica , DNA/genética , DNA/metabolismo , Histonas/química , Histonas/genética , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA