Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(11)2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36366491

RESUMO

Six different biosample collection cards, often collectively referred to as FTA (Flinders Technology Associates) cards, were compared for their ability to inactivate viruses and stabilize viral nucleic acid for molecular testing. The cards were tested with bluetongue virus, foot-and-mouth disease virus (FMDV), small ruminant morbillivirus (peste des petits ruminants virus), and lumpy skin disease virus (LSDV), encompassing non-enveloped and enveloped representatives of viruses with double-stranded and single-stranded RNA genomes, as well as an enveloped DNA virus. The cards were loaded with virus-containing cell culture supernatant and tested after one day, one week, and one month. The inactivation of the RNA viruses was successful for the majority of the cards and filters. Most of them completely inactivated the viruses within one day or one week at the latest, but the inactivation of LSDV presented a greater challenge. Three of the six cards inactivated LSDV within one day, but the others did not achieve this even after an incubation period of 30 days. Differences between the cards were also evident in the stabilization of nucleic acid. The amount of detectable viral genome on the cards remained approximately constant for all viruses and cards over an incubation period of one month. With some cards, however, a bigger loss of detectable nucleic acid compared with a directly extracted sample was observed. Using FMDV, it was confirmed that the material applied to the cards was sufficiently conserved to allow detailed molecular characterization by sequencing. Furthermore, it was possible to successfully recover infectious FMDV by chemical transfection from some cards, confirming the preservation of full-length RNAs.


Assuntos
Vírus da Febre Aftosa , Vírus da Peste dos Pequenos Ruminantes , Bovinos , Animais , Contenção de Riscos Biológicos , RNA Viral/genética , Vírus da Febre Aftosa/genética , Vírus da Peste dos Pequenos Ruminantes/genética
2.
Viruses ; 14(9)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36146730

RESUMO

Safe sample transport is of great importance for infectious diseases diagnostics. Various treatments and buffers are used to inactivate pathogens in diagnostic samples. At the same time, adequate sample preservation, particularly of nucleic acids, is essential to allow an accurate laboratory diagnosis. For viruses with single-stranded RNA genomes of positive polarity, such as foot-and-mouth disease virus (FMDV), however, naked full-length viral RNA can itself be infectious. In order to assess the risk of infection from inactivated FMDV samples, two animal experiments were performed. In the first trial, six cattle were injected with FMDV RNA (isolate A22/IRQ/24/64) into the tongue epithelium. All animals developed clinical disease within two days and FMDV was reisolated from serum and saliva samples. In the second trial, another group of six cattle was exposed to FMDV RNA by instilling it on the tongue and spraying it into the nose. The animals were observed for 10 days after exposure. All animals remained clinically unremarkable and virus isolation as well as FMDV genome detection in serum and saliva were negative. No transfection reagent was used for any of the animal inoculations. In conclusion, cattle can be infected by injection with naked FMDV RNA, but not by non-invasive exposure to the RNA. Inactivated FMDV samples that contain full-length viral RNA carry only a negligible risk of infecting animals.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Animais , Bovinos , Vírus da Febre Aftosa/genética , Genômica , RNA Viral/genética
3.
Viruses ; 14(5)2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35632839

RESUMO

A proficiency test was performed to verify that the regional veterinary laboratories in Germany can provide reliable foot-and-mouth disease virus (FMDV) diagnostics. Overall, 24 samples were to be analyzed for FMDV-specific nucleic acids by real-time RT-PCR, and 16 samples had to be tested by ELISA for antibodies against non-structural proteins of FMDV. For both methods, a range of dilutions of the original materials (inactivated FMDV vaccine or convalescent serum from infected animals, respectively) was prepared, and negative samples were included as well. All 23 participating laboratories were able to detect FMDV genome down to a dilution of 1:100,000 of the vaccine preparation. Even at a dilution of 1:1,000,000, FMDV genome was detected by more than half of the participants. With the antibody ELISA, all sera were correctly identified by all participating laboratories. No false-positive results were returned with either method. All participating laboratories were found to be fully proficient in FMDV diagnostics.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Vírus da Febre Aftosa/genética , Humanos , Laboratórios , Reação em Cadeia da Polimerase em Tempo Real
4.
J Virol Methods ; 305: 114539, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35523370

RESUMO

Epithelial tissue or vesicular fluid from an unruptured or recently ruptured vesicle is the sample of choice for confirmatory laboratory diagnosis of foot-and-mouth disease (FMD). However, in 'FMD-free' countries the transport and downstream processing of such samples from potentially infected animals present a biosafety risk, particularly during heightened surveillance, potentially involving decentralised testing in laboratories without adequate biocontainment facilities. In such circumstances, rapid inactivation of virus, if present, prior to transport becomes a necessity, while still maintaining the integrity of diagnostic analytes. Tongue epithelium collected from cattle infected with FMD virus (FMDV) of serotype O (O/ALG/3/2014 - Lineage O/ME-SA/Ind-2001d) or A (A/IRN/22/2015 - Lineage A/ASIA/G-VII) was incubated in the PAXGene Tissue System Fixative (pH 4) and Stabiliser (pH 6.5) components respectively, in McIlvaine's citrate-phosphate buffer (pH 2.6) or in phosphate-buffered saline (PBS, pH 7.4) at room temperature for 2, 6, 24 or 48 h. Following incubation, tissues were homogenised and tested by virus isolation and titration using LFBKαVß6 cells. The integrity of FMD viral RNA was assessed by RT-qPCR (3Dpol coding region), Sanger sequencing of the VP1 region and transfection of LFBKαVß6 cells to recover infectious virus. Viable virus could be recovered from samples incubated in PBS for at least 48 h. The PAXgene Tissue System Stabiliser component yielded variable results dependent on virus serotype, requiring at least 6 h of incubation to inactivate A/IRN/22/2015 in most samples, whereas the Fixative component required up to 2 h in some samples. McIlvaine's citrate-phosphate buffer rapidly inactivated both viruses within 2 h of incubation. There was no demonstrable degradation of FMD viral RNA resulting from incubation in any of the buffers for up to 48 h, as assessed by RT-qPCR, and 24 h by sequencing and transfection to recover infectious virus. McIlvaine's citrate-phosphate buffer (pH 2.6) is easy to prepare, inexpensive and inactivates serotype A and O FMDV in epithelial tissue within 2 h, while maintaining RNA integrity for downstream diagnostic processes and virus characterisation.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Bovinos , Citratos , Epitélio , Fixadores , Vírus da Febre Aftosa/genética , Fosfatos , RNA Viral/genética , Sorogrupo , Língua
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA