Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38260327

RESUMO

The recent advent of crystallographic small-molecule fragment screening presents the opportunity to obtain unprecedented numbers of ligand-bound protein crystal structures from a single high-throughput experiment, mapping ligandability across protein surfaces and identifying useful chemical footholds for structure-based drug design. However, due to the low binding affinities of most fragments, detecting bound fragments from crystallographic datasets has been a challenge. Here we report a trove of 65 new fragment hits across 59 new liganded crystal structures for PTP1B, an "undruggable" therapeutic target enzyme for diabetes and cancer. These structures were obtained from computational analysis of data from a large crystallographic screen, demonstrating the power of this approach to elucidate many (~50% more) "hidden" ligand-bound states of proteins. Our new structures include a fragment hit found in a novel binding site in PTP1B with a unique location relative to the active site, one that validates another new binding site recently identified by simulations, one that links adjacent allosteric sites, and, perhaps most strikingly, a fragment that induces long-range allosteric protein conformational responses via a previously unreported intramolecular conduit. Altogether, our research highlights the utility of computational analysis of crystallographic data, makes publicly available dozens of new ligand-bound structures of a high-value drug target, and identifies novel aspects of ligandability and allostery in PTP1B.

2.
Commun Biol ; 7(1): 59, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216663

RESUMO

Protein function hinges on small shifts of three-dimensional structure. Elevating temperature or pressure may provide experimentally accessible insights into such shifts, but the effects of these distinct perturbations on protein structures have not been compared in atomic detail. To quantitatively explore these two axes, we report the first pair of structures at physiological temperature versus. high pressure for the same protein, STEP (PTPN5). We show that these perturbations have distinct and surprising effects on protein volume, patterns of ordered solvent, and local backbone and side-chain conformations. This includes interactions between key catalytic loops only at physiological temperature, and a distinct conformational ensemble for another active-site loop only at high pressure. Strikingly, in torsional space, physiological temperature shifts STEP toward previously reported active-like states, while high pressure shifts it toward a previously uncharted region. Altogether, our work indicates that temperature and pressure are complementary, powerful, fundamental macromolecular perturbations.


Assuntos
Proteínas , Temperatura , Modelos Moleculares , Proteínas/química , Conformação Molecular
3.
bioRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37425870

RESUMO

In their folded state, biomolecules exchange between multiple conformational states that are crucial for their function. Traditional structural biology methods, such as X-ray crystallography and cryogenic electron microscopy (cryo-EM), produce density maps that are ensemble averages, reflecting molecules in various conformations. Yet, most models derived from these maps explicitly represent only a single conformation, overlooking the complexity of biomolecular structures. To accurately reflect the diversity of biomolecular forms, there is a pressing need to shift towards modeling structural ensembles that mirror the experimental data. However, the challenge of distinguishing signal from noise complicates manual efforts to create these models. In response, we introduce the latest enhancements to qFit, an automated computational strategy designed to incorporate protein conformational heterogeneity into models built into density maps. These algorithmic improvements in qFit are substantiated by superior Rfree and geometry metrics across a wide range of proteins. Importantly, unlike more complex multicopy ensemble models, the multiconformer models produced by qFit can be manually modified in most major model building software (e.g. Coot) and fit can be further improved by refinement using standard pipelines (e.g. Phenix, Refmac, Buster). By reducing the barrier of creating multiconformer models, qFit can foster the development of new hypotheses about the relationship between macromolecular conformational dynamics and function.

4.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 1): 1-12, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38133579

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) plays important roles in cellular homeostasis and is a highly validated therapeutic target for multiple human ailments, including diabetes, obesity and breast cancer. However, much remains to be learned about how conformational changes may convey information through the structure of PTP1B to enable allosteric regulation by ligands or functional responses to mutations. High-resolution X-ray crystallography can offer unique windows into protein conformational ensembles, but comparison of even high-resolution structures is often complicated by differences between data sets, including non-isomorphism. Here, the highest resolution crystal structure of apo wild-type (WT) PTP1B to date is presented out of a total of ∼350 PTP1B structures in the PDB. This structure is in a crystal form that is rare for PTP1B, with two unique copies of the protein that exhibit distinct patterns of conformational heterogeneity, allowing a controlled comparison of local disorder across the two chains within the same asymmetric unit. The conformational differences between these chains are interrogated in the apo structure and between several recently reported high-resolution ligand-bound structures. Electron-density maps in a high-resolution structure of a recently reported activating double mutant are also examined, and unmodeled alternate conformations in the mutant structure are discovered that coincide with regions of enhanced conformational heterogeneity in the new WT structure. These results validate the notion that these mutations operate by enhancing local dynamics, and suggest a latent susceptibility to such changes in the WT enzyme. Together, these new data and analysis provide a detailed view of the conformational ensemble of PTP1B and highlight the utility of high-resolution crystallography for elucidating conformational heterogeneity with potential relevance for function.


Assuntos
Diplopia , Monoéster Fosfórico Hidrolases , Humanos , Regulação Alostérica , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Conformação Proteica
5.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37503000

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is a validated therapeutic target for obesity, diabetes, and certain types of cancer. In particular, allosteric inhibitors hold potential for therapeutic use, but an incomplete understanding of conformational dynamics and allostery in this protein has hindered their development. Here, we interrogate solution dynamics and allosteric responses in PTP1B using high-resolution hydrogen-deuterium exchange mass spectrometry (HDX-MS), an emerging and powerful biophysical technique. Using HDX-MS, we obtain a detailed map of the solution dynamics of apo PTP1B, revealing several flexible loops interspersed among more constrained and rigid regions within the protein structure, as well as local regions that exchange faster than expected from their secondary structure and buriedness. We demonstrate that our HDX rate data obtained in solution adds value to predictions of dynamics derived from a pseudo-ensemble constructed from ~200 crystal structures of PTP1B. Furthermore, we report HDX-MS maps for PTP1B with active-site vs. allosteric small-molecule inhibitors. These maps reveal distinct, dramatic, and widespread effects on protein dynamics relative to the apo form, including changes to dynamics in locations distal (>35 Å) from the respective ligand binding sites. These results help shed light on the allosteric nature of PTP1B and the surprisingly far-reaching consequences of inhibitor binding in this important protein. Overall, our work showcases the potential of HDX-MS for elucidating protein conformational dynamics and allosteric effects of small-molecule ligands, and highlights the potential of integrating HDX-MS alongside other complementary methods to guide the development of new therapeutics.

6.
bioRxiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205580

RESUMO

Protein function hinges on small shifts of three-dimensional structure. Elevating temperature or pressure may provide experimentally accessible insights into such shifts, but the effects of these distinct perturbations on protein structures have not been compared in atomic detail. To quantitatively explore these two axes, we report the first pair of structures at physiological temperature vs. high pressure for the same protein, STEP (PTPN5). We show that these perturbations have distinct and surprising effects on protein volume, patterns of ordered solvent, and local backbone and side-chain conformations. This includes novel interactions between key catalytic loops only at physiological temperature, and a distinct conformational ensemble for another active-site loop only at high pressure. Strikingly, in torsional space, physiological temperature shifts STEP toward previously reported active-like states, while high pressure shifts it toward a previously uncharted region. Together, our work argues that temperature and pressure are complementary, powerful, fundamental macromolecular perturbations.

7.
Elife ; 122023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36881464

RESUMO

Much of our current understanding of how small-molecule ligands interact with proteins stems from X-ray crystal structures determined at cryogenic (cryo) temperature. For proteins alone, room-temperature (RT) crystallography can reveal previously hidden, biologically relevant alternate conformations. However, less is understood about how RT crystallography may impact the conformational landscapes of protein-ligand complexes. Previously, we showed that small-molecule fragments cluster in putative allosteric sites using a cryo crystallographic screen of the therapeutic target PTP1B (Keedy et al., 2018). Here, we have performed two RT crystallographic screens of PTP1B using many of the same fragments, representing the largest RT crystallographic screens of a diverse library of ligands to date, and enabling a direct interrogation of the effect of data collection temperature on protein-ligand interactions. We show that at RT, fewer ligands bind, and often more weakly - but with a variety of temperature-dependent differences, including unique binding poses, changes in solvation, new binding sites, and distinct protein allosteric conformational responses. Overall, this work suggests that the vast body of existing cryo-temperature protein-ligand structures may provide an incomplete picture, and highlights the potential of RT crystallography to help complete this picture by revealing distinct conformational modes of protein-ligand systems. Our results may inspire future use of RT crystallography to interrogate the roles of protein-ligand conformational ensembles in biological function.


Assuntos
Cristalografia , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Sítio Alostérico , Sítios de Ligação , Ligantes , Temperatura , Proteína Tirosina Fosfatase não Receptora Tipo 1/química
8.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 1): 23-30, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36598353

RESUMO

Room-temperature X-ray crystallography provides unique insights into protein conformational heterogeneity, but obtaining sufficiently large protein crystals is a common hurdle. Serial synchrotron crystallography (SSX) helps to address this hurdle by allowing the use of many medium- to small-sized crystals. Here, a recently introduced serial sample-support chip system has been used to obtain the first SSX structure of a human phosphatase, specifically protein tyrosine phosphatase 1B (PTP1B) in the unliganded (apo) state. In previous apo room-temperature structures, the active site and allosteric sites adopted alternate conformations, including open and closed conformations of the active-site WPD loop and of a distal allosteric site. By contrast, in our SSX structure the active site is best fitted with a single conformation, but the distal allosteric site is best fitted with alternate conformations. This observation argues for additional nuance in interpreting the nature of allosteric coupling in this protein. Overall, our results illustrate the promise of serial methods for room-temperature crystallography, as well as future avant-garde crystallography experiments, for PTP1B and other proteins.


Assuntos
Monoéster Fosfórico Hidrolases , Síncrotrons , Humanos , Cristalografia por Raios X , Modelos Moleculares , Temperatura , Conformação Proteica
9.
IUCrJ ; 9(Pt 5): 682-694, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36071812

RESUMO

The COVID-19 pandemic, instigated by the SARS-CoV-2 coronavirus, continues to plague the globe. The SARS-CoV-2 main protease, or Mpro, is a promising target for the development of novel antiviral therapeutics. Previous X-ray crystal structures of Mpro were obtained at cryogenic tem-per-ature or room tem-per-ature only. Here we report a series of high-resolution crystal structures of unliganded Mpro across multiple tem-per-atures from cryogenic to physiological, and another at high humidity. We inter-rogate these data sets with parsimonious multiconformer models, multi-copy ensemble models, and isomorphous difference density maps. Our analysis reveals a perturbation-dependent conformational landscape for Mpro, including a mobile zinc ion inter-leaved between the catalytic dyad, mercurial conformational heterogeneity at various sites including a key substrate-binding loop, and a far-reaching intra-molecular network bridging the active site and dimer inter-face. Our results may inspire new strategies for antiviral drug development to aid preparation for future coronavirus pandemics.

10.
bioRxiv ; 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33972941

RESUMO

The COVID-19 pandemic, instigated by the SARS-CoV-2 coronavirus, continues to plague the globe. The SARS-CoV-2 main protease, or Mpro, is a promising target for development of novel antiviral therapeutics. Previous X-ray crystal structures of Mpro were obtained at cryogenic temperature or room temperature only. Here we report a series of high-resolution crystal structures of unliganded Mpro across multiple temperatures from cryogenic to physiological, and another at high humidity. We interrogate these datasets with parsimonious multiconformer models, multi-copy ensemble models, and isomorphous difference density maps. Our analysis reveals a temperature-dependent conformational landscape for Mpro, including mobile solvent interleaved between the catalytic dyad, mercurial conformational heterogeneity in a key substrate-binding loop, and a far-reaching intramolecular network bridging the active site and dimer interface. Our results may inspire new strategies for antiviral drug development to counter-punch COVID-19 and combat future coronavirus pandemics.

11.
Protein Sci ; 30(1): 270-285, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33210433

RESUMO

New X-ray crystallography and cryo-electron microscopy (cryo-EM) approaches yield vast amounts of structural data from dynamic proteins and their complexes. Modeling the full conformational ensemble can provide important biological insights, but identifying and modeling an internally consistent set of alternate conformations remains a formidable challenge. qFit efficiently automates this process by generating a parsimonious multiconformer model. We refactored qFit from a distributed application into software that runs efficiently on a small server, desktop, or laptop. We describe the new qFit 3 software and provide some examples. qFit 3 is open-source under the MIT license, and is available at https://github.com/ExcitedStates/qfit-3.0.


Assuntos
Algoritmos , Modelos Moleculares , Proteínas/química , Software , Microscopia Crioeletrônica , Cristalografia por Raios X , Ligantes
12.
Acta Crystallogr D Struct Biol ; 75(Pt 2): 123-137, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821702

RESUMO

Proteins inherently fluctuate between conformations to perform functions in the cell. For example, they sample product-binding, transition-state-stabilizing and product-release states during catalysis, and they integrate signals from remote regions of the structure for allosteric regulation. However, there is a lack of understanding of how these dynamic processes occur at the basic atomic level. This gap can be at least partially addressed by combining variable-temperature (instead of traditional cryogenic temperature) X-ray crystallography with algorithms for modeling alternative conformations based on electron-density maps, in an approach called multitemperature multiconformer X-ray crystallography (MMX). Here, the use of MMX to reveal alternative conformations at different sites in a protein structure and to estimate the degree of energetic coupling between them is discussed. These insights can suggest testable hypotheses about allosteric mechanisms. Temperature is an easily manipulated experimental parameter, so the MMX approach is widely applicable to any protein that yields well diffracting crystals. Moreover, the general principles of MMX are extensible to other perturbations such as pH, pressure, ligand concentration etc. Future work will explore strategies for leveraging X-ray data across such perturbation series to more quantitatively measure how different parts of a protein structure are coupled to each other, and the consequences thereof for allostery and other aspects of protein function.


Assuntos
Cristalografia por Raios X/métodos , Proteínas/química , Regulação Alostérica , Sítio Alostérico , Animais , Domínio Catalítico , Humanos , Concentração de Íons de Hidrogênio , Ligantes , Modelos Moleculares , Pressão , Conformação Proteica , Proteínas/metabolismo , Temperatura , Termodinâmica
13.
J Med Chem ; 61(24): 11183-11198, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30457858

RESUMO

Proteins and ligands sample a conformational ensemble that governs molecular recognition, activity, and dissociation. In structure-based drug design, access to this conformational ensemble is critical to understand the balance between entropy and enthalpy in lead optimization. However, ligand conformational heterogeneity is currently severely underreported in crystal structures in the Protein Data Bank, owing in part to a lack of automated and unbiased procedures to model an ensemble of protein-ligand states into X-ray data. Here, we designed a computational method, qFit-ligand, to automatically resolve conformationally averaged ligand heterogeneity in crystal structures, and applied it to a large set of protein receptor-ligand complexes. In an analysis of the cancer related BRD4 domain, we found that up to 29% of protein crystal structures bound with drug-like molecules present evidence of unmodeled, averaged, relatively isoenergetic conformations in ligand-receptor interactions. In many retrospective cases, these alternate conformations were adventitiously exploited to guide compound design, resulting in improved potency or selectivity. Combining qFit-ligand with high-throughput screening or multitemperature crystallography could therefore augment the structure-based drug design toolbox.


Assuntos
Biologia Computacional/métodos , Cristalografia por Raios X , Modelos Moleculares , Proteínas/química , Algoritmos , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Calibragem , Proteínas de Ciclo Celular , Bases de Dados de Proteínas , Desenho de Fármacos , Elétrons , Ensaios de Triagem em Larga Escala/métodos , Ligantes , Proteínas Nucleares/química , Domínios Proteicos , Proteínas/metabolismo , Fatores de Transcrição/química
14.
Elife ; 72018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29877794

RESUMO

Allostery is an inherent feature of proteins, but it remains challenging to reveal the mechanisms by which allosteric signals propagate. A clearer understanding of this intrinsic circuitry would afford new opportunities to modulate protein function. Here, we have identified allosteric sites in protein tyrosine phosphatase 1B (PTP1B) by combining multiple-temperature X-ray crystallography experiments and structure determination from hundreds of individual small-molecule fragment soaks. New modeling approaches reveal 'hidden' low-occupancy conformational states for protein and ligands. Our results converge on allosteric sites that are conformationally coupled to the active-site WPD loop and are hotspots for fragment binding. Targeting one of these sites with covalently tethered molecules or mutations allosterically inhibits enzyme activity. Overall, this work demonstrates how the ensemble nature of macromolecular structure, revealed here by multitemperature crystallography, can elucidate allosteric mechanisms and open new doors for long-range control of protein function.


Assuntos
Regulação Alostérica , Conformação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Sítio Alostérico , Sítios de Ligação , Cristalografia por Raios X , Humanos , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Temperatura
15.
Protein Sci ; 27(1): 293-315, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29067766

RESUMO

This paper describes the current update on macromolecular model validation services that are provided at the MolProbity website, emphasizing changes and additions since the previous review in 2010. There have been many infrastructure improvements, including rewrite of previous Java utilities to now use existing or newly written Python utilities in the open-source CCTBX portion of the Phenix software system. This improves long-term maintainability and enhances the thorough integration of MolProbity-style validation within Phenix. There is now a complete MolProbity mirror site at http://molprobity.manchester.ac.uk. GitHub serves our open-source code, reference datasets, and the resulting multi-dimensional distributions that define most validation criteria. Coordinate output after Asn/Gln/His "flip" correction is now more idealized, since the post-refinement step has apparently often been skipped in the past. Two distinct sets of heavy-atom-to-hydrogen distances and accompanying van der Waals radii have been researched and improved in accuracy, one for the electron-cloud-center positions suitable for X-ray crystallography and one for nuclear positions. New validations include messages at input about problem-causing format irregularities, updates of Ramachandran and rotamer criteria from the million quality-filtered residues in a new reference dataset, the CaBLAM Cα-CO virtual-angle analysis of backbone and secondary structure for cryoEM or low-resolution X-ray, and flagging of the very rare cis-nonProline and twisted peptides which have recently been greatly overused. Due to wide application of MolProbity validation and corrections by the research community, in Phenix, and at the worldwide Protein Data Bank, newly deposited structures have continued to improve greatly as measured by MolProbity's unique all-atom clashscore.


Assuntos
Bases de Dados de Proteínas , Modelos Moleculares , Linguagens de Programação , Proteínas/química , Proteínas/genética
16.
J Synchrotron Radiat ; 24(Pt 1): 73-82, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009548

RESUMO

Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature have not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins (T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 107 Gy at 100 K and 105 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. This analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation damage, and not as a result thereof.


Assuntos
Cristalografia por Raios X , Proteínas/efeitos da radiação , Temperatura , Animais , Galinhas , Cristalização , Feminino , Humanos , Proteínas/química
17.
J Mol Biol ; 428(4): 709-719, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26854760

RESUMO

Many proteins have small-molecule binding pockets that are not easily detectable in the ligand-free structures. These cryptic sites require a conformational change to become apparent; a cryptic site can therefore be defined as a site that forms a pocket in a holo structure, but not in the apo structure. Because many proteins appear to lack druggable pockets, understanding and accurately identifying cryptic sites could expand the set of drug targets. Previously, cryptic sites were identified experimentally by fragment-based ligand discovery and computationally by long molecular dynamics simulations and fragment docking. Here, we begin by constructing a set of structurally defined apo-holo pairs with cryptic sites. Next, we comprehensively characterize the cryptic sites in terms of their sequence, structure, and dynamics attributes. We find that cryptic sites tend to be as conserved in evolution as traditional binding pockets but are less hydrophobic and more flexible. Relying on this characterization, we use machine learning to predict cryptic sites with relatively high accuracy (for our benchmark, the true positive and false positive rates are 73% and 29%, respectively). We then predict cryptic sites in the entire structurally characterized human proteome (11,201 structures, covering 23% of all residues in the proteome). CryptoSite increases the size of the potentially "druggable" human proteome from ~40% to ~78% of disease-associated proteins. Finally, to demonstrate the utility of our approach in practice, we experimentally validate a cryptic site in protein tyrosine phosphatase 1B using a covalent ligand and NMR spectroscopy. The CryptoSite Web server is available at http://salilab.org/cryptosite.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Proteínas/metabolismo , Proteoma/análise , Sítios de Ligação , Humanos , Aprendizado de Máquina , Conformação Proteica
18.
PLoS Comput Biol ; 11(10): e1004507, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26506617

RESUMO

Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechain conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the "flap" regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Overall, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.


Assuntos
Algoritmos , Cristalografia por Raios X/métodos , Modelos Químicos , Modelos Moleculares , Proteínas/química , Proteínas/ultraestrutura , Simulação por Computador , Conformação Proteica , Software
19.
Elife ; 42015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26422513

RESUMO

Determining the interconverting conformations of dynamic proteins in atomic detail is a major challenge for structural biology. Conformational heterogeneity in the active site of the dynamic enzyme cyclophilin A (CypA) has been previously linked to its catalytic function, but the extent to which the different conformations of these residues are correlated is unclear. Here we compare the conformational ensembles of CypA by multitemperature synchrotron crystallography and fixed-target X-ray free-electron laser (XFEL) crystallography. The diffraction-before-destruction nature of XFEL experiments provides a radiation-damage-free view of the functionally important alternative conformations of CypA, confirming earlier synchrotron-based results. We monitored the temperature dependences of these alternative conformations with eight synchrotron datasets spanning 100-310 K. Multiconformer models show that many alternative conformations in CypA are populated only at 240 K and above, yet others remain populated or become populated at 180 K and below. These results point to a complex evolution of conformational heterogeneity between 180--240 K that involves both thermal deactivation and solvent-driven arrest of protein motions in the crystal. The lack of a single shared conformational response to temperature within the dynamic active-site network provides evidence for a conformation shuffling model, in which exchange between rotamer states of a large aromatic ring in the middle of the network shifts the conformational ensemble for the other residues in the network. Together, our multitemperature analyses and XFEL data motivate a new generation of temperature- and time-resolved experiments to structurally characterize the dynamic underpinnings of protein function.


Assuntos
Ciclofilina A/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica/efeitos da radiação , Temperatura
20.
Proteins ; 83(5): 797-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25619796

RESUMO

Protein structures are often thought of as static objects, and indeed, the bulk of a protein's sequence forms α-helices, ß-sheets, and other generally well-ordered substructures. These portions of the molecule pre-pay the entropic price of maintaining a globally unique fold, freeing other regions to adopt multiple alternative conformations. In many cases, this localized flexibility is biologically interesting: it may be important for catalytic turnover or for conformational selection before forming an intermolecular complex, for example. Similarly, most of written language is carefully tuned to avoid ambiguity and convey a singular meaning, a cohesive message. This linguistic scaffolding in some sense pre-pays a rhetorical price, paving the way for punctuated instances in which a given word or phrase can simultaneously adopt multiple alternative connotations-in other words, for puns.


Assuntos
Proteínas/química , Entropia , Modelos Moleculares , Conformação Proteica , Proteínas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA