Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Chem Theory Comput ; 20(10): 4254-4264, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38727197

RESUMO

We propose an X-ray Raman pump-X-ray diffraction probe scheme to follow solvation dynamics upon charge migration in a solute molecule. The X-ray Raman pump selectively prepares a valence electronic wavepacket in the solute, while the probe provides information about the entire molecular ensemble. A combination of molecular dynamics and ab initio quantum chemistry simulations is applied to a Zn-Ni porphyrin dimer in water. Using time-resolved X-ray diffraction and pair distribution functions, we extracted solvation shell dynamics.

2.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38686819

RESUMO

We study the ultrafast time evolution of cyclobutanone excited to the singlet n → Rydberg state through non-adiabatic surface-hopping simulationsperformed at extended multi-state complete active space second-order perturbation (XMS-CASPT2) level of theory. These dynamics predict relaxation to the ground-state with a timescale of 822 ± 45 fs with minimal involvement of the triplets. The major relaxation path to the ground-state involves a three-state degeneracy region and leads to a variety of fragmented photoproducts. We simulate the resulting time-resolved electron-diffraction spectra, which track the relaxation of the excited state and the formation of various photoproducts in the ground state.

3.
J Chem Theory Comput ; 19(8): 2327-2339, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37015111

RESUMO

Tracing the evolution of molecular coherences can provide a direct, unambiguous probe of nonadiabatic molecular processes, such as the passage through conical intersections of electronic states. Two techniques, attosecond transient absorption spectroscopy (ATAS) and Transient Redistribution of Ultrafast Electronic Coherences in Attosecond Raman Signals (TRUECARS), have been used or proposed for monitoring nonadiabatic molecular dynamics. Both techniques employ the transmission of a weak attosecond extreme-ultraviolet or X-ray probe to interrogate the molecule at controllable time delays with respect to an optical pump, thereby extracting dynamical information from transient spectral features. The connection between these techniques has not been firmly established yet. In this theoretical study, we provide a unified description of both transient transmission techniques, establishing their relationship as limits of the same pump-probe spectroscopy technique for different pulse parameter regimes. We demonstrate this by quantum dynamical simulations of thiophenol photodissociation and show how complementary coherence information can be revealed by the two techniques.

4.
Annu Rev Phys Chem ; 74: 73-97, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37093660

RESUMO

Elementary events that determine photochemical outcomes and molecular functionalities happen on the femtosecond and subfemtosecond timescales. Among the most ubiquitous events are the nonadiabatic dynamics taking place at conical intersections. These facilitate ultrafast, nonradiative transitions between electronic states in molecules that can outcompete slower relaxation mechanisms such as fluorescence. The rise of ultrafast X-ray sources, which provide intense light pulses with ever-shorter durations and larger observation bandwidths, has fundamentally revolutionized our spectroscopic capabilities to detect conical intersections. Recent theoretical studies have demonstrated an entirely new signature emerging once a molecule traverses a conical intersection, giving detailed insights into the coupled nuclear and electronic motions that underlie, facilitate, and ultimately determine the ultrafast molecular dynamics. Following a summary of current sources and experiments, we survey these techniques and provide a unified overview of their capabilities. We discuss their potential to dramatically increase our understanding of ultrafast photochemistry.

5.
Chem Sci ; 14(11): 2971-2982, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36937575

RESUMO

Understanding conical intersection (CI) dynamics and subsequent conformational changes is key for exploring and controlling photo-reactions in aromatic molecules. Monitoring of their time-resolved dynamics remains a formidable experimental challenge. In this study, we simulate the photoinduced S3 to S1 non-adiabatic dynamics of cyclooctatetraene (COT), involving multiple CIs with relaxation times in good agreement with experiment. We further investigate the possibility to directly probe the CI passages in COT by off-resonant X-ray Raman spectroscopy (TRUECARS) and time-resolved X-ray diffraction (TRXD). We find that these signals sensitively monitor key chemical features during the ultrafast dynamics. First, we distinguish two CIs by using TRUECARS signals with their appearances at different Raman shifts. Second, we demonstrate that TRXD, where X-ray photons scatter off electron densities, can resolve ultrafast changes in the aromaticity of COT. It can further distinguish between planar and non-planar geometries explored during the dynamics, as e.g. two different tetraradical-type CIs. The knowledge gained from these measurements can give unique insight into fundamental chemical properties that dynamically change during non-adiabatic passages.

6.
J Phys Chem A ; 127(3): 835-841, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36650121

RESUMO

Recent development of X-ray free-electron lasers and megaelectronvolt radio-frequency electron guns have made ultrafast X-ray and electron diffraction measurements possible, thereby capturing chemical dynamics with atomic-spatial and femtosecond-temporal resolutions. We present a unified formulation of standard homodyne-detected and heterodyne-detected signals for both techniques. Noting that X-rays scatter from molecular electrons while electrons scatter from both molecular electrons and nuclei, we show how the two diffraction signals can be combined to reveal novel chemical information that is unavailable by solely using each technique alone. By subtracting the homodyne-detected X-ray and electron diffraction signals, a mixed electronic-nuclear interference in electron diffraction can be identified with a self-heterodyne nature for the direct imaging of attosecond electron dynamics where the scattering off molecular nuclei serves as a local oscillator for the scattering off molecular electrons. By subtracting heterodyne-detected X-ray and electron diffraction, the purely nuclear charge density can be singled out.

7.
Nat Commun ; 13(1): 5897, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202801

RESUMO

The evolution of ultrafast-laser technology has steadily advanced the level of detail in studies of light-matter interactions. Here, we employ electric-field-resolved spectroscopy and quantum-chemical modelling to precisely measure and describe the complete coherent energy transfer between octave-spanning mid-infrared waveforms and vibrating molecules in aqueous solution. The sub-optical-cycle temporal resolution of our technique reveals alternating absorption and (stimulated) emission on a few-femtosecond time scale. This behaviour can only be captured when effects beyond the rotating wave approximation are considered. At a femtosecond-to-picosecond timescale, optical-phase-dependent coherent transients and the dephasing of the vibrations of resonantly excited methylsulfonylmethane (DMSO2) are observed. Ab initio modelling using density functional theory traces these dynamics back to molecular-scale sample properties, in particular vibrational frequencies and transition dipoles, as well as their fluctuation due to the motion of DMSO2 through varying solvent environments. Future extension of our study to nonlinear interrogation of higher-order susceptibilities is fathomable with state-of-the-art lasers.

8.
J Am Chem Soc ; 144(44): 20400-20410, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36301840

RESUMO

The ultrafast photoinduced chirality loss of 2-iodobutane is studied theoretically by time- and frequency-resolved X-ray circular dichroism (TRXCD) spectroscopy. Following an optical excitation, the iodine atom dissociates from the chiral center, which we capture by quantum non-adiabatic molecular dynamics simulations. At variable time delays after the pump, the resonant X-ray pulse selectively probes the iodine and carbon atom involved in the chiral dissociation through a selected core-to-valence transition. The TRXCD signal at the iodine L1 edge accurately captures the timing of C-I photodissociation and thereby chirality loss, c.a 70 fs. The strong electric dipole-electric quadrupole (ED-EQ) response makes this signal particularly sensitive to vibronic coherence at the high X-ray regime. At the carbon K-edges, the signals monitor the molecular chirality of the 2-butyl radical photoproduct and the spin state of the iodine atom. The ED-EQ response is masked under the strong electric dipole-magnetic dipole response, making this signal intuitive for the electronic population. The evolution of the core electronic states and its chiral sensitivity is discussed. Overall, the element-specific TRXCD signal provides a detailed picture of molecular dynamics and offers a unique sensitive window into the time-dependent chirality of molecules.


Assuntos
Carbono , Iodo , Dicroísmo Circular , Raios X
9.
Phys Rev Lett ; 129(10): 103001, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36112435

RESUMO

Quantum coherences in electronic motions play a critical role in determining the pathways and outcomes of virtually all photophysical and photochemical molecular processes. However, the direct observation of electronic coherences in the vicinity of conical intersections remains a formidable challenge. We propose a novel time-resolved twisted x-ray diffraction technique that can directly monitor the electronic coherences created as the molecule passes through a conical intersection. We show that the contribution of electronic populations to this signal is canceled out when using twisted x-ray beams that carry a light orbital angular momentum, providing a direct measurement of transient electronic coherences in gas-phase molecules.

10.
Chem Sci ; 13(21): 6373-6384, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35733898

RESUMO

The photoinduced ultrafast coherent inter-chromophore energy redistribution in a triarylamine trimer is explored using nonadiabatic excited state molecular dynamics followed by simulations of X-ray Raman signals. The nitrogencentered system ensures strong interchromophore interactions and, thus, the presence of coherences. Nevertheless, the multitude of non-deterministic photoinduced pathways during the ultrafast inter-branch migration of the excitation results in random confinement on some branches and, therefore, spatial exciton scrambling and loss of phase information at long times. We show that the vibronic coherence dynamics evolving into the incoherent scrambling mechanism on ultrafast 50 fs timescale, is accurately probed by the TRUECARS X-ray stimulated Raman signal. In combination with previous results, where the technique has revealed long-lived coherences in a rigid heterodimer, the signal is most valuable for detecting ultrafast molecular coherences or their absence. We demonstrate that X-ray Raman spectroscopy is a useful tool in the chemical design of functional molecular building blocks.

11.
Proc Natl Acad Sci U S A ; 119(22): e2205510119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35609200

RESUMO

SignificanceIn a theoretical study, we present an ultrafast technique for probing time-dependent molecular charge densities. An ultrafast optical pump first brings the molecule into an electronic nonstationary state. This is followed by coherent inelastic scattering of a broadband single-electron probe pulse with a variable delay T, which is detected spectrally. The technique is applied to reveal phase-sensitive background-free coherent electron beating in the conical intersection passage in uracil and reveals the otherwise elusive coherent beating of strongly coupled electrons and nuclei.

12.
J Am Chem Soc ; 144(17): 7796-7804, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35467867

RESUMO

Monitoring the motions of atoms and molecules in the course of chemical processes is a central goal of femtochemistry. Optical spectroscopic signals are usually sensitive to electronic properties such as dipoles, polarizabilities, and electronic charge densities rather than to nuclear motions. In this theoretical study, we propose a novel measurement that solely and directly monitors the evolving nuclear wave packet and can thereby unambiguously image photochemical events in real time. We demonstrate how nuclear charge densities can be singled out by subtracting the ultrafast gas-phase X-ray and electron diffraction signals in the photodissociation of thiophenol as it passes through two conical intersections. This signal can reveal the shape and trajectory of the nuclear wave packets as well as the electronic coherences in the vicinity of conical intersections.


Assuntos
Elétrons , Modelos Teóricos , Análise Espectral , Raios X
13.
J Chem Theory Comput ; 18(5): 3075-3088, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35476905

RESUMO

We theoretically monitor the photoinduced ππ* → nπ* internal conversion process in 4-thiouracil (4TU), triggered by an optical pump. The element-sensitive spectroscopic signatures are recorded by a resonant X-ray probe tuned to the sulfur, oxygen, or nitrogen K-edge. We employ high-level electronic structure methods optimized for core-excited electronic structure calculation combined with quantum nuclear wavepacket dynamics computed on two relevant nuclear modes, fully accounting for their quantum nature of nuclear motions. We critically discuss the capabilities and limitations of the resonant technique. For sulfur and nitrogen, we document a pre-edge spectral window free from ground-state background and rich with ππ* and nπ* absorption features. The lowest sulfur K-edge shows strong absorption for both ππ* and nπ*. In the lowest nitrogen K-edge window, we resolve a state-specific fingerprint of the ππ* and an approximate timing of the conical intersection via its depletion. A spectral signature of the nπ* transition, not accessible by UV-vis spectroscopy, is identified. The oxygen K-edge is not sensitive to molecular deformations and gives steady transient absorption features without spectral dynamics. The ππ*/nπ* coherence information is masked by more intense contributions from populations. Altogether, element-specific time-resolved resonant X-ray spectroscopy provides a detailed picture of the electronic excited-state dynamics and therefore a sensitive window into the photophysics of thiobases.


Assuntos
Oxigênio , Enxofre , Nitrogênio , Análise Espectral , Tiouracila/análogos & derivados , Raios X
14.
Proc Natl Acad Sci U S A ; 119(11): e2121383119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254910

RESUMO

Time-resolved photoelectron spectroscopy (TRPES) signals that monitor the relaxation of the RNA base uracil upon optical excitation are simulated. Distinguishable signatures of coherence dynamics at conical intersections are identified, with temporal and spectral resolutions determined by the duration of the ionizing probe pulse. The frequency resolution of the technique, either directly provided by the signal or retrieved at the data-processing stage, can magnify the contribution from molecular coherences, enabling the extraction of most valuable information about the nonadiabatic molecular dynamics. The predicted coherence signatures in TRPES could be experimentally observed with existing ultrashort pulses from high-order harmonic generation or free-electron lasers.

15.
J Chem Theory Comput ; 18(2): 605-613, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35073085

RESUMO

Ultrafast electron diffraction is a powerful technique that can resolve molecular structures with femtosecond and angstrom resolutions. We demonstrate theoretically how it can be used to monitor conical intersection dynamics in molecules. Specific contributions to the signal are identified which vanish in the absence of vibronic coherence and offer a direct window into conical intersection paths. A special focus is on hybrid scattering from nuclei and electrons, a process that is unique to electron (rather than X-ray) diffraction and monitors the strongly coupled nuclear and electronic motions in the vicinity of conical intersections. An application is made to the cis to trans isomerization of azobenzene, computed with exact quantum dynamics wavepacket propagation in a reactive two-dimensional nuclear space.

16.
J Chem Theory Comput ; 18(1): 406-414, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34920666

RESUMO

Quantum light spectroscopy, providing novel molecular information nonaccessible by classical light, necessitates new computational tools when applied to complex molecular systems. We introduce two computational protocols for the molecular nuclear wave packet dynamics interacting with an entangled photon pair to produce an entangled two-photon absorption signal. The first involves summing over transition pathways in a temporal grid defined by two light-matter interaction times accompanied by the field correlation functions of quantum light. The signal is obtained by averaging over the two time distribution characteristics of the entangled photon state. The other protocol involves a Schmidt decomposition of the entangled light and requires summing over the Schmidt modes. We demonstrate how photon entanglement can be used to control and manipulate the two-photon excited nuclear wave packets in a displaced harmonic oscillator model.

17.
J Phys Chem Lett ; 12(51): 12300-12309, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34931839

RESUMO

Conical intersections (CoIns) play an important role in ultrafast relaxation channels. Their monitoring remains a formidable experimental challenge. We theoretically compare the probing of the S2 → S1 CoIn passage in 4-thiouracil by monitoring its vibronic coherences, using off-resonant X-ray-stimulated Raman spectroscopy (TRUECARS) and time-resolved X-ray diffraction (TRXD). The quantum nuclear wavepacket (WP) dynamics provides an accurate picture of the photoinduced dynamics. Upon photoexcitation, the WP oscillates among the Franck-Condon point, the S2 minimum, and the CoIn with a 70 fs period. A vibronic coherence first emerges at 20 fs and can be observed until the S2 state is fully depopulated. The distribution of the vibronic frequencies involved in the coherence is recorded by the TRUECARS spectrogram. The TRXD signal provides spatial images of electron densities associated with the CoIn. In combination, the two signals provide a complementary picture of the nonadiabatic passage, which helps in the study of the underlying photophysics in thiobases.

18.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34799455

RESUMO

We demonstrate how two-photon excitation with quantum light can influence elementary photochemical events. The azobenzene trans → cis isomerization following entangled two-photon excitation is simulated using quantum nuclear wave packet dynamics. Photon entanglement modulates the nuclear wave packets by coherently controlling the transition pathways. The photochemical transition state during passage of the reactive conical intersection in azobenzene photoisomerization is strongly affected with a noticeable alteration of the product yield. Quantum entanglement thus provides a novel control knob for photochemical reactions. The distribution of the vibronic coherences during the conical intersection passage strongly depends on the shape of the initial wave packet created upon quantum light excitation. X-ray signals that can experimentally monitor this coherence are simulated.

19.
J Am Chem Soc ; 143(34): 13806-13815, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34402612

RESUMO

The fate of virtually all photochemical reactions is determined by conical intersections. These are energetically degenerate regions of molecular potential energy surfaces that strongly couple electronic states, thereby enabling fast relaxation channels. Their direct spectroscopic detection relies on weak features that are often buried beneath stronger, less interesting contributions. For azobenzene photoisomerization, a textbook photochemical reaction, we demonstrate how a resonant infrared field can be employed during the conical intersection passage to significantly enhance its coherence signatures in time-resolved X-ray diffraction while leaving the product yield intact. This transition-state amplification holds promise to bring signals of conical intersections above the detection threshold.

20.
Chem Sci ; 12(14): 5286-5294, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34168779

RESUMO

The role of quantum-mechanical coherences in the elementary photophysics of functional optoelectronic molecular materials is currently under active study. Designing and controlling stable coherences arising from concerted vibronic dynamics in organic chromophores is the key for numerous applications. Here, we present fundamental insight into the energy transfer properties of a rigid synthetic heterodimer that has been experimentally engineered to study coherences. Quantum non-adiabatic excited state simulations are used to compute X-ray Raman signals, which are able to sensitively monitor the coherence evolution. Our results verify their vibronic nature, that survives multiple conical intersection passages for several hundred femtoseconds at room temperature. Despite the contributions of highly heterogeneous evolution pathways, the coherences are unambiguously visualized by the experimentally accessible X-ray signals. They offer direct information on the dynamics of electronic and structural degrees of freedom, paving the way for detailed coherence measurements in functional organic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA