Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 83(7): 1125-1139.e8, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36917981

RESUMO

CRISPR activation (CRISPRa) is an important tool to perturb transcription, but its effectiveness varies between target genes. We employ human pluripotent stem cells with thousands of randomly integrated barcoded reporters to assess epigenetic features that influence CRISPRa efficacy. Basal expression levels are influenced by genomic context and dramatically change during differentiation to neurons. Gene activation by dCas9-VPR is successful in most genomic contexts, including developmentally repressed regions, and activation level is anti-correlated with basal gene expression, whereas dCas9-p300 is ineffective in stem cells. Certain chromatin states, such as bivalent chromatin, are particularly sensitive to dCas9-VPR, whereas constitutive heterochromatin is less responsive. We validate these rules at endogenous genes and show that activation of certain genes elicits a change in the stem cell transcriptome, sometimes showing features of differentiated cells. Our data provide rules to predict CRISPRa outcome and highlight its utility to screen for factors driving stem cell differentiation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas , Neurônios , Ativação Transcricional , Cromatina/genética
2.
Philos Trans A Math Phys Eng Sci ; 374(2059)2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26667918

RESUMO

Accumulations of sediment beneath the Antarctic Ice Sheet contain a range of physical and chemical proxies with the potential to document changes in ice sheet history and to identify and characterize life in subglacial settings. Retrieving subglacial sediments and sediment cores presents several unique challenges to existing technologies. This paper briefly reviews the history of sediment sampling in subglacial environments. It then outlines some of the technological challenges and constraints in developing the corers being used in sub-ice shelf settings (e.g. George VI Ice Shelf and Larsen Ice Shelf), under ice streams (e.g. Rutford Ice Stream), at or close to the grounding line (e.g. Whillans Ice Stream) and in subglacial lakes deep under the ice sheet (e.g. Lake Ellsworth). The key features of the corers designed to operate in each of these subglacial settings are described and illustrated together with comments on their deployment procedures.

3.
Philos Trans A Math Phys Eng Sci ; 374(2059)2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26667920

RESUMO

It is 4 years since the subglacial lake community published its plans for accessing, sampling, measuring and studying the pristine, and hitherto enigmatic and very different, Antarctic subglacial lakes, Vostok, Whillans and Ellsworth. This paper summarizes the contrasting probe technologies designed for each of these subglacial environments and briefly updates how these designs changed or were used differently when compared to previously published plans. A detailed update on the final engineering design and technical aspects of the probe for Subglacial Lake Ellsworth is presented. This probe is designed for clean access, is negatively buoyant (350 kg), 5.2 m long, 200 mm in diameter, approximately cylindrical and consists of five major units: (i) an upper power and communications unit attached to an optical and electrical conducting tether, (ii)-(iv) three water and particle samplers, and (v) a sensors, imaging and instrumentation pack tipped with a miniature sediment corer. To date, only in Subglacial Lake Whillans have instruments been successfully deployed. Probe technologies for Subglacial Lake Vostok (2014/15) and Lake Ellsworth (2012/13) were not deployed for technical reasons, in the case of Lake Ellsworth because hot-water drilling was unable to access the lake during the field season window. Lessons learned and opportunities for probe technologies in future subglacial access missions are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA