Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Genom ; 3(9): 100384, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37719153

RESUMO

High-throughput spatial transcriptomics has emerged as a powerful tool for investigating the spatial distribution of mRNA expression and its effects on cellular function. There is a lack of standardized tools for analyzing spatial transcriptomics data, leading many groups to write their own in-house tools that are often poorly documented and not generalizable. To address this, we have expanded and improved the starfish library and used those tools to create PIPEFISH, a semi-automated and generalizable pipeline that performs transcript annotation for fluorescence in situ hybridization (FISH)-based spatial transcriptomics. We used this pipeline to annotate transcript locations from three real datasets from three different common types of FISH image-based experiments, MERFISH, seqFISH, and targeted in situ sequencing (ISS), and verified that the results were high quality using the internal quality metrics of the pipeline and also a comparison with an orthogonal method of measuring RNA expression. PIPEFISH is a publicly available and open-source tool.

2.
PLoS Pathog ; 16(8): e1008643, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32790776

RESUMO

The current state of much of the Wuhan pneumonia virus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) research shows a regrettable lack of data sharing and considerable analytical obfuscation. This impedes global research cooperation, which is essential for tackling public health emergencies and requires unimpeded access to data, analysis tools, and computational infrastructure. Here, we show that community efforts in developing open analytical software tools over the past 10 years, combined with national investments into scientific computational infrastructure, can overcome these deficiencies and provide an accessible platform for tackling global health emergencies in an open and transparent manner. Specifically, we use all SARS-CoV-2 genomic data available in the public domain so far to (1) underscore the importance of access to raw data and (2) demonstrate that existing community efforts in curation and deployment of biomedical software can reliably support rapid, reproducible research during global health crises. All our analyses are fully documented at https://github.com/galaxyproject/SARS-CoV-2.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Saúde Pública , Síndrome Respiratória Aguda Grave/virologia , COVID-19 , Análise de Dados , Humanos , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA