Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Stimul ; 13(4): 1024-1030, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32388045

RESUMO

INTRODUCTION: Vagus nerve stimulation (VNS) is an FDA-approved neuromodulatory treatment used in the clinic today for epilepsy, depression, and cluster headaches. Moreover, evidence in the literature has led to a growing list of possible clinical indications, with several small clinical trials applying VNS to treat conditions ranging from neurodegenerative diseases to arthritis, anxiety disorders, and obesity. Despite the growing list of therapeutic applications, the fundamental mechanisms by which VNS achieves its beneficial effects are poorly understood. In parallel, the glymphatic and meningeal lymphatic systems have recently been described as methods by which the brain maintains a healthy homeostasis and removes waste without a traditionally defined lymphatic system. In particular, the glymphatic system relates to the interchange of cerebrospinal fluid (CSF) and interstitial fluid (ISF) whose net effect is to wash through the brain parenchyma removing metabolic waste products and misfolded proteins. OBJECTIVE/HYPOTHESIS: As VNS has well-documented effects on many of the pathways recently linked to the clearance systems of the brain, we hypothesized that VNS could increase CSF penetrance in the brain. METHODS: We injected a low molecular weight lysine-fixable fluorescent tracer (TxRed-3kD) into the CSF system of mice with a cervical vagus nerve cuff implant and measured the amount of CSF penetrance following an application of a clinically-derived VNS paradigm (30 Hz, 10% duty cycle). RESULTS: We found that the clinical VNS group showed a significant increase in CSF tracer penetrance as compared to the naïve control and sham groups. CONCLUSION: (s): This study demonstrates that VNS therapeutic strategies already being applied in the clinic today may induce intended effects and/or unwanted side effects by altering CSF/ISF exchange in the brain. This may have broad ranging implications in the treatment of various CNS pathologies.


Assuntos
Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Estimulação do Nervo Vago/métodos , Animais , Encéfalo/fisiologia , Líquido Cefalorraquidiano/fisiologia , Corantes Fluorescentes/farmacocinética , Masculino , Camundongos , Nervo Vago/fisiologia , Xantenos/líquido cefalorraquidiano
2.
MethodsX ; 7: 100891, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32420047

RESUMO

Traditional methods to assess microbial cells during suspension culture require laborious and frequent manual sampling. Approaches to automate sampling and assessment utilize dedicated, sophisticated equipment and suffer from a lack of temporal resolution and sampling efficiency. In this study we describe a simple microfluidic device that allows microbial cells to be sampled from suspension culture and rapidly slowed and concentrated for single-cell imaging on a standard laboratory microscope. We demonstrate a device that: •slows and concentrates microbial cells, specifically budding yeast, sampled from suspension culture and improves imaging of individual cells by concentrating them in a single focal plane•provides imaging quality and temporal resolution that is capable of monitoring dynamic spatiotemporal processes, such as nuclear localization of a protein•is inexpensive and simple enough to be fabricated and used in laboratories equipped for standard molecular and cellular biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA