Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Poult Sci ; 103(6): 103704, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38642485

RESUMO

Avian cellulitis in broilers, caused by avian pathogenic Escherichia coli, is a major cause for carcass rejections during meat inspection, resulting in significant economic losses. In this study, we analysed E. coli isolates obtained from broiler chickens affected by cellulitis for their genetic relatedness and antimicrobial resistance phenotype and genotype. The objective was to determine whether there is a clonal spread or whether these clinical isolates differ. For this purpose, E. coli was isolated from swab samples collected from diseased broilers across 77 poultry farms in Germany, resulting in 107 isolates. These isolates were subjected to serotyping, PCR-based phylotyping and macrorestriction analysis with subsequent pulsed-field gel-electrophoresis for typing purposes. In addition, the presence of virulence genes associated with avian pathogenic E. coli (APEC) was investigated by PCR. Antimicrobial susceptibility of the isolates was examined by the disk diffusion method according to CLSI guidelines and subsequently, the presence of corresponding resistance genes was investigated by PCR. Typing results revealed that a significant proportion of the isolates belonged to serotype O78:K80, which is one of the major APEC serotypes. Phylogenetic grouping showed that phylogenetic group D was most commonly represented (n = 49). Macrorestriction analysis showed overall heterogenous results, however, some clustering of closely related isolates was observed. The level of antimicrobial resistance was high, with 83.8% of isolates non-susceptible to at least one class of antimicrobial agents and 40% of isolates showing resistance to at least three classes. The most frequently observed resistance was to ampicillin, mediated by blaTEM (n = 56). However, few isolates were non-susceptible to ciprofloxacin (n = 8) and none of the isolates was resistant to 3rd generation cephalosporins or carbapenems. Overall, the results show that genetically diverse APEC associated with avian cellulitis can be found among and within German poultry farms. While most isolates were antimicrobial resistant, resistance levels to high(est) priority critically important antimicrobials were low.

2.
J Clin Microbiol ; 62(3): e0101123, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38363142

RESUMO

This study aimed to develop a method for standardized broth microdilution antimicrobial susceptibility testing (AST) of Avibacterium (Av.) paragallinarum, the causative agent of infectious coryza in chickens. For this, a total of 83 Av. paragallinarum isolates and strains were collected from 15 countries. To select unrelated isolates for method validation steps, macrorestriction analyses were performed with 15 Av. paragallinarum. The visible growth of Av. paragallinarum was examined in six broth media and growth curves were compiled. In Veterinary Fastidious Medium and cation-adjusted Mueller-Hinton broth (CAMHB) + 1% chicken serum + 0.0025% NADH (CAMHB + CS + NADH), visible growth of all isolates was detected and both media allowed adequate bacterial growth. Due to the better readability of Av. paragallinarum growth in microtiter plates, CAMHB + CS + NADH was chosen for AST. Repetitions of MIC testing with five epidemiologically unrelated isolates using a panel of 24 antimicrobial agents resulted in high essential MIC agreements of 96%-100% after 48-h incubation at 35 ± 2°C. Hence, the remaining 78 Av. paragallinarum were tested and demonstrated easily readable MICs with the proposed method. Differences in MICs were detected between isolates from different continents, with isolates from Africa showing lower MICs compared to isolates from America and Europe, which more often showed elevated MICs of aminoglycosides, quinolones, tetracyclines, and/or trimethoprim/sulfamethoxazole. PCR analyses of isolates used for method development revealed that isolates with elevated MICs of tetracyclines harbored the tetracycline resistance gene tet(B) but none of the other tested resistance genes were detected. Therefore, whole-genome sequencing data from 62 Av. paragallinarum were analyzed and revealed the presence of sequences showing nucleotide sequence identity to the genes aph(6)-Id, aph(3″)-Ib, blaTEM-1B, catA2, sul2, tet(B), tet(H), and mcr-like. Overall, the proposed method using CAMHB + CS + NADH for susceptibility testing with 48-h incubation time at 35 ± 2°C in ambient air was shown to be suitable for Av. paragallinarum. Due to a variety of resistance genes detected, the development of clinical breakpoints is highly recommended. IMPORTANCE: Avibacterium paragallinarum is an important pathogen in veterinary medicine that causes infectious coryza in chickens. Since antibiotics are often used for treatment and resistance of the pathogen is known, targeted therapy should be given after resistance testing of the pathogen. Unfortunately, there is currently no accepted method in standards that allows susceptibility testing of this fastidious pathogen. Therefore, we have worked out a method that allows harmonized susceptibility testing of the pathogen. The method meets the requirements of the CLSI and could be used by diagnostic laboratories.


Assuntos
Anti-Infecciosos , Doenças das Aves Domésticas , Animais , Galinhas/microbiologia , NAD , Antibacterianos , Tetraciclina , Testes de Sensibilidade Microbiana , Doenças das Aves Domésticas/microbiologia
3.
Appl Microbiol Biotechnol ; 108(1): 171, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265503

RESUMO

Infections caused by Campylobacter spp. are a major cause of severe enteritis worldwide. Multifactorial prevention strategies are necessary to reduce the prevalence of Campylobacter. In particular, antiadhesive strategies with specific inhibitors of early host-pathogen interaction are promising approaches to reduce the bacterial load. An in vitro flow cytometric adhesion assay was established to study the influence of carbohydrates on the adhesion of C. jejuni to Caco-2 cells. Chitosans with a high degree of polymerization and low degree of acetylation were identified as potent antiadhesive compounds, exerting significant reduction of C. jejuni adhesion to Caco-2 cells at non-toxic concentrations. Antiadhesive and also anti-invasive effects were verified by confocal laser scanning microscopy. For target identification, C. jejuni adhesins FlpA and JlpA were expressed in Escherichia coli ArcticExpress, and the influence of chitosan on binding to fibronectin and HSP90α, respectively, was investigated. While no effects on FlpA binding were found, a strong inhibition of JlpA-HSP90α binding was observed. To simulate real-life conditions, chicken meat was inoculated with C. jejuni, treated with antiadhesive chitosan, and the bacterial load was quantified. A strong reduction of C. jejuni load was observed. Atomic force microscopy revealed morphological changes of C. jejuni after 2 h of chitosan treatment, indicating disturbance of the cell wall and sacculi formation by electrostatic interaction of positively charged chitosan with the negatively charged cell surface. In conclusion, our data indicate promising antiadhesive and anti-invasive potential of high molecular weight, strongly de-acetylated chitosans for reducing C. jejuni load in livestock and food production. KEY POINTS: • Antiadhesive effects of chitosan with high DP/low DA against C. jejuni to host cells • Specific targeting of JlpA/Hsp90α interaction by chitosan • Meat treatment with chitosan reduces C. jejuni load.


Assuntos
Campylobacter jejuni , Quitosana , Humanos , Células CACO-2 , Acetilação , Adesinas Bacterianas , Escherichia coli
4.
Microorganisms ; 11(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38138024

RESUMO

Organizations like the Clinical and Laboratory Standards Institute (CLSI) or the European Committee of Antimicrobial Susceptibility Testing (EUCAST) provide standardized methodologies for antimicrobial susceptibility testing of a wide range of nonfastidious and fastidious bacteria, but so far not for Mycoplasma spp. of animal origin. Recently, a proposed method for the standardized broth microdilution testing of Mycoplasma hyorhinis using commercial Sensititre microtiter plates was presented. In this study, we evaluated this broth microdilution method with 37 field isolates and tested their susceptibility toward the following antimicrobial agents: doxycycline, enrofloxacin, erythromycin, florfenicol, gentamicin, marbofloxacin, tetracycline, tiamulin, tilmicosin, tulathromycin, and tylosin. The isolates originated from different countries, isolation sites, and years. The broth microdilution method was carried out using a modified Friis broth as the culture and test medium. For macrolides and lincosamides, a bimodal distribution with elevated MIC values could be observed for almost half of the tested field isolates, deducing reduced susceptibility toward these substances. With a recently published protocol, we were able to test a variety of field isolates, and consistent data could be obtained. Using this method, monitoring studies of Mycoplasma hyorhinis isolates can be carried out in a comparable manner, and the observed susceptibility profiles can be screened for possible changes in MIC values in the future.

5.
Natl Sci Rev ; 10(10): nwad228, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37965675

RESUMO

Understanding changes in pathogen behavior (e.g. increased virulence, a shift in transmission channel) is critical for the public health management of emerging infectious diseases. Genome degradation via gene depletion or inactivation is recognized as a pathoadaptive feature of the pathogen evolving with the host. However, little is known about the exact role of genome degradation in affecting pathogenic behavior, and the underlying molecular detail has yet to be examined. Using large-scale global avian-restricted Salmonella genomes spanning more than a century, we projected the genetic diversity of Salmonella Pullorum (bvSP) by showing increasingly antimicrobial-resistant ST92 prevalent in Chinese flocks. The phylogenomic analysis identified three lineages in bvSP, with an enhancement of virulence in the two recently emerged lineages (L2/L3), as evidenced in chicken and embryo infection assays. Notably, the ancestor L1 lineage resembles the Salmonella serovars with higher metabolic flexibilities and more robust environmental tolerance, indicating stepwise evolutionary trajectories towards avian-restricted lineages. Pan-genome analysis pinpointed fimbrial degradation from a virulent lineage. The later engineered fim-deletion mutant, and all other five fimbrial systems, revealed behavior switching that restricted horizontal fecal-oral transmission but boosted virulence in chicks. By depleting fimbrial appendages, bvSP established persistent replication with less proinflammation in chick macrophages and adopted vertical transovarial transmission, accompanied by ever-increasing intensification in the poultry industry. Together, we uncovered a previously unseen paradigm for remodeling bacterial surface appendages that supplements virulence-enhanced evolution with increased vertical transmission.

6.
J Clin Microbiol ; 61(8): e0190522, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37439667

RESUMO

Mycoplasma bovis is a fastidious pathogen of cattle causing massive economic losses in the calf and dairy industries worldwide. Since there is no approved standard method for antimicrobial susceptibility testing (AST) of M. bovis, the Clinical and Laboratory Standards Institute has requested the development of a suitable method. Therefore, this study aimed at developing a method for harmonized broth microdilution AST of M. bovis. For this, 131 M. bovis field isolates and M. bovis strain DSM 22781T were collected and macrorestriction analysis was performed to select 15 epidemiologically unrelated M. bovis strains for method validation steps. To select a suitable broth for AST of M. bovis, growth determinations were performed using five media and growth curves were compiled. Then, susceptibility testing was performed considering the exact (precondition of five identical MICs) and essential (MIC mode, accepting a deviation of ±1 dilution step) MIC agreements to evaluate the reproducibility of MIC values using a panel of 16 antimicrobial agents. Subsequently, the remaining field isolates were tested and the suitability of quality control (QC) strains was assessed. Growth experiments showed that SP4 broth was the only one of the five media that yielded sufficient growth of M. bovis. Therefore, it was selected as the test medium for AST and homogeneous MIC values were obtained (exact and essential agreements of 36 to 100% and 92 to 100%, respectively). For all other isolates tested, easy-to-read MIC endpoints were determined with this medium. High overall MIC50 and/or MIC90 values were observed for aminoglycosides and macrolides, and some isolates showed elevated MICs of fluoroquinolones, gentamicin, and/or tiamulin. Since the MICs of four commonly used QC strains were partially not within their ranges, a 20-fold MIC testing of M. bovis DSM 22781T was performed and met the criteria for a new QC strain. For harmonized AST of M. bovis, SP4 broth seems to be suitable with an incubation time of 72 ± 2 h and further validation of M. bovis DSM 22781T as a future QC strain is recommended.


Assuntos
Anti-Infecciosos , Mycoplasma bovis , Animais , Bovinos , Reprodutibilidade dos Testes , Antibacterianos/farmacologia , Fluoroquinolonas , Meios de Cultura , Testes de Sensibilidade Microbiana
7.
Microbiol Spectr ; 11(3): e0370222, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37125905

RESUMO

Bordetella avium causes a highly infectious upper respiratory tract disease in turkeys and other poultry with high economic losses. Considering the antimicrobial resistance crisis, bacteriophages (phages) may be an alternative approach for treating bacterial infections such as bordetellosis. Here, we describe seven B. avium phages, isolated from drinking water and feces from chicken and turkey farms. They showed strong bacteriolytic activity with a broad host range and used lipopolysaccharides (LPS) as a host receptor for their adsorption. All phages are myoviruses based on their structure observed by transmission electron microscopy. Genome sequence analyses revealed genome assembly sizes ranging from 39,087 to 43,144 bp. Their permutated genomes were organized colinearly, with a conserved module order, and were packed according to a predicted headful packing strategy. Notably, they contained genes encoding putative markers of lysogeny, indicative of temperate phages, despite their lytic phenotype. Further investigation revealed that the phages could indeed undergo a lysogenic life cycle with varying frequency. However, the lysogenic bacteria were still susceptible to superinfection with the same phages. This lack of stable superinfection immunity after lysogenization appears to be a characteristic feature of B. avium phages, which is favorable in terms of a potential therapeutic use of phages for the treatment of avian bordetellosis. IMPORTANCE To maintain the effectiveness of antibiotics over the long term, alternatives to treat infectious diseases are urgently needed. Therefore, phages have recently come back into focus as they can specifically infect and lyse bacteria and are naturally occurring. However, there is little information on phages that can infect pathogenic bacteria from animals, such as the causative agent of bordetellosis of poultry, B. avium. Therefore, in this study, B. avium phages were isolated and comprehensively characterized, including whole-genome analysis. Although phenotypically the phages were thought to undergo a lytic cycle, we demonstrated that they undergo a lysogenic phase, but that infection does not confer stable host superinfection immunity. These findings provide important information that could be relevant for potential biocontrol of avian bordetellosis by using phage therapy.


Assuntos
Bacteriófagos , Infecções por Bordetella , Bordetella avium , Superinfecção , Animais , Bacteriófagos/genética , Lipopolissacarídeos , Lisogenia , Infecções por Bordetella/microbiologia , Bactérias
8.
Microorganisms ; 11(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37110416

RESUMO

Conducting antimicrobial susceptibility testing (AST) in a comparable manner requires the availability of a standardized method. Organizations, such as the Clinical and Laboratory Standards Institute (CLSI) or the European Committee on Antimicrobial Susceptibility Testing (EUCAST), provide standardized protocols for a range of fastidious bacteria but not for Mycoplasma hyorhinis. We developed a broth microdilution method for testing M. hyorhinis in a standardized and harmonized way using a modified Friis broth devoid of antimicrobial or otherwise bacterial growth-inhibiting agents. The type strain M. hyorhinis DSM 25591 was chosen to establish the methodology. The antimicrobial agents of interest were doxycycline, enrofloxacin, erythromycin, florfenicol, gentamicin, marbofloxacin, tetracycline, tiamulin, tilmicosin, tulathromycin, and tylosin, tested by using commercial SensititreTM microtiter plates. In addition, the suitability of the methodology was evaluated via variation of the individual ingredients of the modified Friis broth by either using different batches or choosing other distributors. Despite these alterations, the method provided reliable results. We obtained repeatable minimal inhibitory concentrations for all six tested field isolates and the M. hyorhinis type strain. With this newly proposed method, we aim to provide an improved AST method for diagnostic laboratories and monitoring purposes with better comparability between times and countries. In addition, this new method will allow for an improvement of targeted treatments using antimicrobial agents and thereby reduce the options for resistance development.

9.
Poult Sci ; 101(12): 102209, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36283144

RESUMO

Application of organic acids via feed or drinking water is under discussion as a possible intervention strategy to reduce Campylobacter (C.) load in primary poultry production. A previous in vitro study showed that reduced concentrations of sorbic acid, benzoic acid, propionic acid, and acetic acid were required for antibacterial activity against Campylobacter when using a mixture of these 4 acids compared to when using the single acids. The present study aimed at determining the antibacterial efficiency of this combination in vivo as a drinking water additive for reducing shedding and intestinal C. jejuni colonization in broilers. Furthermore, we assessed whether the inoculated C. jejuni strain BfR-CA-14430 adapted in vivo to the applied organic acids. Results of this study showed that adding the organic acids consistently reduced Campylobacter loads in cloacal swabs. While significant reductions were observed within the entire study period, a maximum 2 log reduction occurred at an age of 18 d. However, after dissection at the end of the trial, no significant differences were detected in Campylobacter loads of cecal and colon contents compared to the control group. Susceptibility testing of re-isolates from cloacal swabs and cecal content revealed equal minimum inhibitory concentration (MIC) values compared to the inoculated test strain, suggesting that C. jejuni remained susceptible throughout the trial.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Campylobacter , Água Potável , Doenças das Aves Domésticas , Animais , Infecções por Campylobacter/prevenção & controle , Infecções por Campylobacter/veterinária , Infecções por Campylobacter/microbiologia , Galinhas , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Antibacterianos/farmacologia
10.
Microbiol Spectr ; 10(5): e0247922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36194132

RESUMO

High-resolution and efficient typing for the bacterial pathogen is essential for tracking the sources, detecting or diagnosing variants, and conducting a risk assessment. However, a systematic in-field investigation of Salmonella along the food chain has not been documented. This study assessed 12 typing methods, such as antimicrobial-resistance (AMR) gene profile typing, Core Genome Multilocus Sequence Typing (cgMLST), and CRISPR multi-virulence locus sequence typing (CRISPR-MVLST), to evaluate their effectiveness for use in routine monitoring of foodborne Salmonella transmission along the poultry production chain. During 2015-16, a total of 1,064 samples were collected from poultry production chain, starting from breeding farms and slaughterhouses to the markets of Zhejiang province in China. A total of 61 consecutive unique Salmonella isolates recovered from these samples were selected for genome sequencing and further comparative typing analysis. Traditional typing methods, including serotyping, AMR phenotype-based typing, as well as modern genotyping approaches, were evaluated and compared by their discrimination index (DI). The results showed that the serotyping method identified nine serovars. The gold standard cgMLST method indicated only 18 different types (DI = 0.8541), while the CRISPR-MVLST method detected 30 types (DI = 0.9628), with a higher DI than all examined medium-resolution WGS-based genotyping methods. We demonstrate that the CRISPR-MVLST might be used as a tool with high discriminatory power, comparable ease of use, ability of tracking the source of Salmonella strains along the food chain and indication of genetic features especially virulence genes. The available methods with different purposes and laboratory expertise were also illustrated to assist in rational implementation. IMPORTANCE In public health field, high-resolution and efficient typing of the bacterial pathogen is essential, considering source-tracking and risk assessment are fundamental issues. Currently, there are no recommendations for applying molecular characterization methods for Salmonella along the food chain, and a systematic in-field investigation comparing subtyping methods in the context of routine surveillance was partially addressed. Using 1,064 samples along a poultry production chain with a considerable level of Salmonella contamination, we collected representative isolates for genome sequencing and comparative analysis by using 12 typing techniques, particularly with whole-genome sequence (WGS) based methods and a recently invented CRISPR multi-virulence locus sequence typing (CRISPR-MVLST) method. CRISPR-MVLST is identified as a tool with higher discriminatory power compared with medium-resolution WGS-based typing methods, comparable ease of use and proven ability of tracking Salmonella isolates. Besides, we also offer recommendations for rational choice of subtyping methods to assist in better implementation schemes.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Salmonella , Salmonella/genética , Tipagem de Sequências Multilocus/métodos , Sorogrupo , Análise de Sequência de DNA
11.
Antibiotics (Basel) ; 11(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36140027

RESUMO

Antimicrobial resistance is a global health threat that involves complex, opaque transmission processes in the environment. In particular, wildlife appears to function as a reservoir and vector for antimicrobial-resistant bacteria as well as resistance genes. In the present study, the occurrence of antimicrobial-resistant Escherichia coli was determined in marine mammals and various fish species of the North and Baltic Seas. Rectal or faecal swabs were collected from 66 live-caught or stranded marine mammals and 40 fish specimens. The antimicrobial resistance phenotypes and genotypes of isolated E. coli were determined using disk diffusion tests and PCR assays. Furthermore, isolates were assigned to the four major phylogenetic groups of E. coli. Additionally, post mortem examinations were performed on 41 of the sampled marine mammals. The investigations revealed resistant E. coli in 39.4% of the marine mammal samples, while no resistant isolates were obtained from any of the fish samples. The obtained isolates most frequently exhibited resistance against aminoglycosides, followed by ß-lactams. Of the isolates, 37.2% showed multidrug resistance. Harbour porpoises (Phocoena phocoena) mainly carried E. coli isolates belonging to the phylogenetic group B1, while seal isolates were most frequently assigned to group B2. Regarding antimicrobial resistance, no significant differences were seen between the two sampling areas or different health parameters, but multidrug-resistant isolates were more frequent in harbour porpoises than in the sampled seals. The presented results provide information on the distribution of antimicrobial-resistant bacteria in the North and Baltic Seas, and highlight the role of these resident marine mammal species as sentinels from a One Health perspective.

12.
EMBO Mol Med ; 14(11): e16366, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36172999

RESUMO

Invasive nontyphoidal Salmonella (iNTS) causes extraintestinal infections with ~15% case fatality in many countries. However, the mechanism by which iNTS emerged in China remains unaddressed. We conducted clinical investigations of iNTS infection with recurrent treatment failure, caused by underreported Salmonella enterica serovar Livingstone (SL). Genomic epidemiology demonstrated five clades in the SL population and suggested that the international animal feed trade was a likely vehicle for their introduction into China, as evidenced by multiple independent transmission incidents. Importantly, isolates from Clade-5-I-a/b, predominant in China, showed an invasive nature in mice, chicken and zebrafish infection models. The antimicrobial susceptibility testing revealed most isolates (> 96%) in China are multidrug-resistant (MDR). Overall, we offer exploiting genomics in uncovering international transmission led by the animal feed trade and highlight an emerging hypervirulent clade with increased resistance to frontline antibiotics.


Assuntos
Domesticação , Infecções por Salmonella , Animais , Camundongos , Sorogrupo , Peixe-Zebra , Infecções por Salmonella/epidemiologia , Salmonella/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética
13.
Pathogens ; 11(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36014957

RESUMO

Antimicrobial-resistant bacteria pose a serious global health risk for humans and animals, while the role of wildlife in the dynamic transmission processes of antimicrobial resistance in environmental settings is still unclear. This study determines the occurrence of antimicrobial-resistant Escherichia coli in the free-living great cormorants (Phalacrocorax carbo) of the North and Baltic Sea coasts of Schleswig-Holstein, Germany. For this, resistant E.coli were isolated from cloacal or faecal swabs and their antimicrobial resistance pheno- and genotypes were investigated using disk diffusion tests and PCR assays. The isolates were further assigned to the four major phylogenetic groups, and their affiliation to avian pathogenic E. coli (APEC) was tested. Resistant E. coli were isolated from 66.7% of the 33 samples, and 48.9% of all the resistant isolates showed a multidrug resistance profile. No spatial differences were seen between the different sampling locations with regard to the occurrence of antimicrobial resistance or multidrug resistance. Most commonly, resistance percentages occurred against streptomycin, followed by tetracycline and sulfonamides. More than half of the isolates belonged to the phylogenetic group B1. Of all the isolates, 24.4% were classified as APEC isolates, of which almost 82% were identified as multidrug-resistant. These results add information on the dispersal of antimicrobial-resistant bacteria in wild birds in Germany, thereby allowing conclusions on the degree of environmental contamination and potential public health concerns.

14.
J Hazard Mater ; 438: 129476, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35809365

RESUMO

To counteract the dramatic increase in antibiotic-resistant bacterial pathogens, many countries, including China, have banned the use of antibiotic-supplemented feed for farming animals. However, the exact consequences of this policy have not been systematically evaluated. Therefore, Salmonella isolates from farms that ceased using antibiotics 1-5 years ago were compared with isolates from farms that continue to use antimicrobials as growth promotors. Here, we used whole-genome sequencing combined with in-depth phenotypic assays to investigate the ecology, epidemiology, and persistence of multi-drug resistant (MDR) Salmonella from animal farms during the withdrawal of antibiotic growth promotors. Our results showed that the prevalence of Salmonella was significantly lower in antibiotic-free feed (AFF) farms compared to conventional-feed (CF) farms, even though all isolates obtained from AFF farms were MDR (>5 classes) and belonged to well-recognized predominant serovars. The additional phylogenomic analysis combined with principal component analysis showed high similarity between the predominant serovars in AFF and CF farms. This result raised questions regarding the environmental persistence capabilities of MDR strain despite AFF policy. To address this question, a representative panel of 20 isolates was subjected to disadvantageous environmental stress assays. These results showed that the predominant serovars in AFF and CF farms were more tolerant to stress conditions than other serovars. Collectively, our findings suggest that AFF helps eliminate only specific MDR serovars, and future guiding policies would benefit by identifying predominant Salmonella clones in problematic farms to determine the use of AFF and additional targeted interventions.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Salmonella , Ração Animal/análise , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Fazendas , Salmonella/efeitos dos fármacos , Salmonella/genética , Salmonella/isolamento & purificação , Salmonella/fisiologia , Sorogrupo , Estresse Fisiológico
15.
J Clin Microbiol ; 60(8): e0041922, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35852371

RESUMO

Avibacterium (Av.) gallinarum is an opportunistic pathogen in poultry, which, however, has also been associated with human disease. There is currently no approved method for antimicrobial susceptibility testing of this pathogen, so this study aimed at developing a harmonized broth microdilution method for Av. gallinarum that is suitable for diagnostic laboratories. For this, the Av. gallinarum CCUG 12391T type strain and 42 field isolates were collected and their species was confirmed by using a species-specific PCR assay and biochemical reactions. To select epidemiologically unrelated isolates, ApaI macrorestriction analysis was performed. Preliminary growth experiments were conducted with six culture media, and based on the results, four media were selected to compile growth curves with four isolates. Independent repetitions of MIC determinations were then performed to evaluate the reproducibility of the values. Cation-adjusted Mueller-Hinton broth (CAMHB) was initially selected as broth medium, but did not show sufficient homogeneity of MICs. Therefore, CAMHB plus 1% chicken serum and 0.0025% NADH was selected and showed a good homogeneity of MICs after 20 h and 24 h of incubation at 35 ± 2°C. This was reflected in essential MIC agreements ranging between 96% and 100%. Testing of a larger Av. gallinarum collection (n = 43) revealed that easily readable MICs could be obtained for the type strain and all isolates. Some Av. gallinarum showed elevated MICs of enrofloxacin (n = 35), nalidixic acid (n = 35), penicillin (n = 2), tetracycline (n = 19), and/or trimethoprim-sulfamethoxazole (n = 1). By using PCR analyses, the following antimicrobial resistance genes were detected: blaTEM, dfrA14, sul2, tet(B), tet(H). The study demonstrated that the proposed medium is suitable for a harmonized broth microdilution susceptibility testing of Av. gallinarum with a recommended incubation time of 20 to 24 h.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Pasteurellaceae , Reprodutibilidade dos Testes
16.
Microbiol Spectr ; 10(4): e0096522, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35727054

RESUMO

Paratyphoid avian salmonellosis is considered one of the leading causes of poultry death, resulting in significant economic losses to poultry industries worldwide. In China, especially in Shandong province, the leading producer of poultry products, several recurrent outbreaks of avian salmonellosis have been reported during the last decade where the precise causal agent remains unknown. Moreover, the establishment of earlier and more accurate recognition of pathogens is a key factor to prevent the further dissemination of resistant and/or hypervirulent clones. Here, we aim to use whole-genome sequencing combined with in silico toolkits to provide the genomic features of the antimicrobial resistance and virulence potential of 105 regionally representative non-Pullorum/Gallinarum Salmonella isolates recovered from dead poultry between 2008 and 2019 in Shandong, China. Additionally, phenotypic susceptibility to a panel of 15 antibiotics representing 11 classes was assessed by the broth microdilution method. In this study, we identified eight serovars and nine multilocus sequence typing (MLST) types, with Salmonella enterica serovar Enteritidis sequence type 11 (ST11) being the most prevalent (84/105; 80%). Based on their phenotypic antimicrobial resistance, 77.14% of the isolates were defined as multidrug resistant (≥3 antimicrobial classes), with the detection of one S. Enteritidis isolate that was resistant to the 11 classes. The highest rates of resistance were observed against nalidixic acid (97.14%) and ciprofloxacin (91.43%), followed by ampicillin (71.43%), streptomycin (64.77%), and tetracycline (60%). Genomic characterization revealed the presence of 41 resistance genes, with an alarmingly high prevalence of blaTEM-1B (60%), in addition to genomic mutations affecting the DNA gyrase (gyrA) and DNA topoisomerase IV (parC) genes, conferring resistance to quinolones. The prediction of plasmid replicons detected 14 types, with a dominance of IncFIB(S)_1 and IncFII(S)_1 (87.62% for both), while the IncX1 plasmid type was considered the key carrier of antimicrobial resistance determinants. Moreover, we report the detection of critical virulence genes, including cdtB, rck, sodCI, pef, and spv, in addition to the typical determinants for Salmonella pathogenicity island 1 (SPI-1) and SPI-2. Furthermore, phylogenomic analysis revealed the detection of three intra-farm and five inter-farm transmission events. Overall, the detection of Salmonella isolates presenting high antimicrobial resistance and harboring different critical virulence genes is of major concern, which requires the urgent implementation of effective strategies to mitigate non-Pullorum/Gallinarum avian salmonellosis. IMPORTANCE Avian salmonellosis is one of the leading global causes of poultry death, resulting in substantial economic losses in China (constituting 9% of overall financial losses). In Shandong province, a top poultry producer (30% of the overall production in China, with 15% being exported to the world), extensive outbreaks of avian salmonellosis have been reported in the past decade where the causal agents or exact types remain rarely addressed. From approximately 2008 to 2019, over 2,000 Salmonella strains were isolated and identified from dead poultry during routine surveillance of 95 poultry farms covering all 17 cities in Shandong. Approximately 1,500 isolates were confirmed to be of non-Pullorum/Gallinarum Salmonella serovars. There is an urgent need to understand the mechanisms behind the implication of zoonotic Salmonella serovars in systemic infections of poultry. Here, we analyzed populations of clinically relevant isolates of non-Pullorum/Gallinarum Salmonella causing chicken death in China by a whole-genome sequencing approach and determined that antimicrobial-resistant Salmonella Enteritidis remained the major cause in the past decades.


Assuntos
Doenças das Aves Domésticas , Intoxicação Alimentar por Salmonella , Salmonelose Animal , Salmonella enterica , Animais , Antibacterianos/farmacologia , Galinhas , Farmacorresistência Bacteriana/genética , Tipagem de Sequências Multilocus , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia , Salmonella , Salmonelose Animal/epidemiologia , Salmonella enterica/genética , Salmonella enteritidis , Sorogrupo , Virulência/genética
18.
Front Med (Lausanne) ; 9: 753085, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308507

RESUMO

Typhoid fever is a life-threatening disease caused by Salmonella enterica serovar Typhi (S. Typhi) and remains a significant public health burden in developing countries. In China, typhoid fever is endemic with a limited number of reported outbreaks. Recently, Chinese local Center for Disease Prevention and Control is starting to apply whole genome sequencing for tracking the source of outbreak isolates. In this study, we conducted a retrospective investigation into a community outbreak of typhoid fever in Lanling, China, in 2016. A total of 26 S. Typhi isolates were recovered from the drinking water (n = 1) and patients' blood (n = 24) and stool (n = 1). Phylogenetic analysis indicated the persistence of the outbreak isolates in drinking water for more than 3 months. The genomic comparison demonstrated a high similarity between the isolate from water and isolates from patients in their genomic content, virulence gene profiles, and antimicrobial resistance gene profile, indicating the S. Typhi isolate from drinking water was responsible for the examined outbreak. The result of pulsed-field gel electrophoresis (PFGE) revealed these isolates had identical PFGE pattern, indicating they are clonal variants. Additionally, phylogeographical analysis of global S. Typhi isolates suggested the outbreak isolates are evolutionarily linked to the isolates from the United Kingdom and Vietnam. Taken together, this study highlights the drinking water and international travel as critical control points of mitigating the outbreak, emphasizing the necessity of regular monitoring of this pathogen in China.

19.
Transbound Emerg Dis ; 69(5): e1992-e2005, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35340119

RESUMO

The hepatitis E virus (HEV) can cause acute and chronic hepatitis in humans. Infections with the zoonotic HEV genotype 3, which can be transmitted from infected wild boar and deer to humans, are increasingly detected in Europe. To investigate the spatiotemporal HEV infection dynamics in wild animal populations, a study involving 3572 samples of wild boar and three deer species from six different geographic areas in Germany over a 4-year period was conducted. The HEV-specific antibody detection rates increased between 2013-2014 and 2016-2017 in wild boar from 9.5% to 22.8%, and decreased in deer from 1.1% to 0.2%. At the same time, HEV-RNA detection rates increased in wild boar from 2.8% to 13.3% and in deer from 0.7% to 4.2%. Marked differences were recorded between the investigated areas, with constantly high detection rates in one area and new HEV introductions followed by increasing detection rates in others. Molecular typing identified HEV subtypes 3c, 3f, 3i and a putative new subtype related to Italian wild boar strains. In areas, where sufficient numbers of positive samples were available for further analysis, a specific subtype dominated over the whole observation period. Phylogenetic analysis confirmed the close relationship between strains from the same area and identified closely related human strains from Germany. The results suggest that the HEV infection dynamics in wild animals is dependent on the particular geographical area where area-specific dominant strains circulate over a long period. The virus can spread from wild boar, which represent the main wild animal reservoir, to deer, and generally from wild animals to humans.


Assuntos
Cervos , Vírus da Hepatite E , Hepatite E , Doenças dos Suínos , Animais , Animais Selvagens , Genótipo , Alemanha/epidemiologia , Anticorpos Anti-Hepatite , Hepatite E/epidemiologia , Hepatite E/veterinária , Vírus da Hepatite E/genética , Humanos , Filogenia , RNA , RNA Viral/genética , Sus scrofa , Suínos , Doenças dos Suínos/epidemiologia
20.
Antibiotics (Basel) ; 11(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35203830

RESUMO

Campylobacteriosis is a worldwide-occurring disease and has been the most commonly reported zoonotic gastrointestinal infection in the European Union in recent years. The development of successful phage-based intervention strategies will require a better understanding of phage-bacteria interactions to facilitate advances in phage cocktail design. Therefore, this study aimed to investigate the effects of newly isolated group II and group III phages and their combinations on current Campylobacter field strains. A continuous workflow for host range and efficiency of plating (EOP) value determination was combined with a qPCR-based phage group identification and a liquid-based planktonic killing assay (PKA). An advanced analysis scheme allowed us to evaluate phage cocktails by their efficacy in inhibiting bacterial population growth and the resulting phage concentrations. The results of this study indicate that data obtained from PKAs are more accurate than host range data based on plaque formation (EOP). Planktonic killing assays with Campylobacter appear to be a useful tool for a straightforward cocktail design. Results show that a group II phage vB_CcM-LmqsCP218-2c2 and group III phage vB_CjM-LmqsCP1-1 mixture would be most promising for practical applications against Campylobacter coli and Campylobacter jejuni.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA