Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383769

RESUMO

CD33 is a transmembrane receptor expressed on cells of myeloid lineage and regulates innate immunity. CD33 is a risk factor for Alzheimer's disease (AD) and targeting CD33 has been a promising strategy drug development. However, the mechanism of CD33's action is poorly understood. Here we investigate the mechanism of anti-CD33 antibody HuM195 (Lintuzumab) and its single-chain variable fragment (scFv) and examine their therapeutic potential. Treatment with HuM195 full-length antibody or its scFv increased phagocytosis of ß-amyloid 42 (Aß42) in human microglia and monocytes. This activation of phagocytosis was driven by internalization and degradation of CD33, thereby downregulating its inhibitory signal. HumM195 transiently induced CD33 phosphorylation and its signaling via receptor dimerization. However, this signaling decayed with degradation of CD33. scFv binding to CD33 leads to a degradation of CD33 without detection of the CD33 dimerization and signaling. Moreover, we found that treatments with either HuM195 or scFv promotes the secretion of IL33, a cytokine implicated in microglia reprogramming. Importantly, recombinant IL33 potentiates the uptake of Aß42 in monocytes. Collectively, our findings provide unanticipated mechanistic insight into the role of CD33 signaling in both monocytes and microglia and define a molecular basis for the development of CD33-based therapy of AD.

2.
Lab Invest ; 103(2): 100012, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37039146

RESUMO

In the face of mechanical, chemical, microbial, and immunologic pressure, intestinal homeostasis is maintained through balanced cellular turnover, proliferation, differentiation, and self-renewal. Here, we present evidence supporting the role of the aryl hydrocarbon receptor (AHR) in the adaptive reprogramming of small intestinal gene expression, leading to altered proliferation, lineage commitment, and remodeling of the cellular repertoire that comprises the intestinal epithelium to promote intestinal resilience. Ahr gene/protein expression and transcriptional activity exhibit marked proximalHI to distalLO and cryptHI to villiLO gradients. Genetic ablation of Ahr impairs commitment/differentiation of the secretory Paneth and goblet cell lineages and associated mucin production, restricts expression of secretory/enterocyte differentiation markers, and increases crypt-associated proliferation and villi-associated enterocyte luminal exfoliation. Ahr-/- mice display a decrease in intestinal barrier function. Ahr+/+ mice that maintain a diet devoid of AHR ligands intestinally phenocopy Ahr-/- mice. In contrast, Ahr+/+ mice exposed to AHR ligands reverse these phenotypes. Ligand-induced AHR transcriptional activity positively correlates with gene expression (Math1, Klf4, Tff3) associated with differentiation of the goblet cell secretory lineage. Math1 was identified as a direct target gene of AHR, a transcription factor critical to the development of goblet cells. These data suggest that dietary cues, relayed through the transcriptional activity of AHR, can reshape the cellular repertoire of the gastrointestinal tract.


Assuntos
Células Epiteliais , Receptores de Hidrocarboneto Arílico , Animais , Camundongos , Diferenciação Celular , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Ligantes , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA