Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(5): e0181321, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34634927

RESUMO

Vaccines pave the way out of the SARS-CoV-2 pandemic. Besides mRNA and adenoviral vector vaccines, effective protein-based vaccines are needed for immunization against current and emerging variants. We have developed a virus-like particle (VLP)-based vaccine using the baculovirus-insect cell expression system, a robust production platform known for its scalability, low cost, and safety. Baculoviruses were constructed encoding SARS-CoV-2 spike proteins: full-length S, stabilized secreted S, or the S1 domain. Since subunit S only partially protected mice from SARS-CoV-2 challenge, we produced S1 for conjugation to bacteriophage AP205 VLP nanoparticles using tag/catcher technology. The S1 yield in an insect-cell bioreactor was ∼11 mg/liter, and authentic protein folding, efficient glycosylation, partial trimerization, and ACE2 receptor binding was confirmed. Prime-boost immunization of mice with 0.5 µg S1-VLPs showed potent neutralizing antibody responses against Wuhan and UK/B.1.1.7 SARS-CoV-2 variants. This two-component nanoparticle vaccine can now be further developed to help alleviate the burden of COVID-19. IMPORTANCE Vaccination is essential to reduce disease severity and limit the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Protein-based vaccines are useful to vaccinate the world population and to boost immunity against emerging variants. Their safety profiles, production costs, and vaccine storage temperatures are advantageous compared to mRNA and adenovirus vector vaccines. Here, we use the versatile and scalable baculovirus expression vector system to generate a two-component nanoparticle vaccine to induce potent neutralizing antibody responses against SARS-CoV-2 variants. These nanoparticle vaccines can be quickly adapted as boosters by simply updating the antigen component.


Assuntos
Anticorpos Neutralizantes/metabolismo , Nanopartículas/metabolismo , SARS-CoV-2/metabolismo , Animais , COVID-19/imunologia , Feminino , Glicosilação , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2/imunologia , Células Sf9 , Vacinas Virais/imunologia
2.
Biotechnol Bioeng ; 91(7): 894-900, 2005 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-15959892

RESUMO

Perfusion systems have the possibility to be operated continuously for several months. It is important that the performance of the cell retention device does not limit the operation time of a perfusion process used in the production of active pharmaceutical ingredients. Therefore, the aim of this study was to investigate the reliability and long-term stability of an acoustic perfusion process using the 200 L/d BioSep. As the BioSep is an external device, it is possible that dependent on the recirculation rate nutrient gradients occur in the external loop, which could affect the cell metabolism. Therefore, the effect of possible nutrient gradients on cell metabolism, viability and productivity was studied by varying the recirculation rate. In this study, it is shown that a perfusion process using a pilot-scale acoustic cell-retention device (200 L/d) is reliable and simple to operate, resulting in a stable 75-day cultivation of a hybridoma cell line producing a monoclonal antibody. The recirculation rate had a significant effect on the oxygen concentration in the external loop, with oxygen being depleted within the cell-retention device at recirculation rates below 6 m3/m(reactor)3.d (=600 L/d). The oxygen depletion at low circulation rates correlated with a slightly increased lactate production rate. For all other parameters no effect of the recirculation rate was observed, including cell death measured through the release of lactate dehydrogenase and specific productivity. A maximum specific productivity of 12 pg/cell.d was reached.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Hibridomas/metabolismo , Anticorpos Monoclonais/biossíntese , Contagem de Células , Sobrevivência Celular , Eficiência , Fermentação , Glucose/análise , Glutamina/análise , Ácido Láctico/metabolismo , Oxigênio/análise , Perfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA