Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Ageing Res Rev ; 95: 102213, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38309591

RESUMO

Pharmacological interventions are emerging as potential avenues of alleviating age-related disease. However, the knowledge of ongoing clinical trials as they relate to aging and pharmacological interventions is dispersed across a variety of mediums. In this review we summarize 136 age-related clinical trials that have been completed or are ongoing. Furthermore, we establish a database that describe the trials (AgingDB, www.agingdb.com) keeping track of the previous and ongoing clinical trials, alongside their outcomes. The aim of this review and database is to give people the ability to easily query for their trial of interest and stay up to date on the latest results. In sum, herein we give an overview of the current pharmacological strategies that have been applied to target human aging.


Assuntos
Envelhecimento , Humanos , Estudos Longitudinais
2.
Sci Rep ; 12(1): 3618, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256673

RESUMO

Metabolic reprogramming contributes to oncogenesis, tumor growth, and treatment resistance in pancreatic ductal adenocarcinoma (PDAC). Here we report the effects of (R,S')-4'-methoxy-1-naphthylfenoterol (MNF), a GPR55 antagonist and biased ß2-adrenergic receptor (ß2-AR) agonist on cellular signaling implicated in proliferation and metabolism in PDAC cells. The relative contribution of GPR55 and ß2-AR in (R,S')-MNF signaling was explored further in PANC-1 cells. Moreover, the effect of (R,S')-MNF on tumor growth was determined in a PANC-1 mouse xenograft model. PANC-1 cells treated with (R,S')-MNF showed marked attenuation in GPR55 signal transduction and function combined with increased ß2-AR/Gαs/adenylyl cyclase/PKA signaling, both of which contributing to lower MEK/ERK, PI3K/AKT and YAP/TAZ signaling. (R,S')-MNF administration significantly reduced PANC-1 tumor growth and circulating L-lactate concentrations. Global metabolic profiling of (R,S')-MNF-treated tumor tissues revealed decreased glycolytic metabolism, with a shift towards normoxic processes, attenuated glutamate metabolism, and increased levels of ophthalmic acid and its precursor, 2-aminobutyric acid, indicative of elevated oxidative stress. Transcriptomics and immunoblot analyses indicated the downregulation of gene and protein expression of HIF-1α and c-Myc, key initiators of metabolic reprogramming in PDAC. (R,S')-MNF treatment decreased HIF-1α and c-Myc expression, attenuated glycolysis, shifted fatty acid metabolism towards ß-oxidation, and suppressed de novo pyrimidine biosynthesis in PANC-1 tumors. The results indicate a potential benefit of combined GPR55 antagonism and biased ß2-AR agonism in PDAC therapy associated with the deprogramming of altered cellular metabolism.


Assuntos
Neoplasias Pancreáticas , Fosfatidilinositol 3-Quinases , Agonistas Adrenérgicos/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Fenoterol/farmacologia , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Canabinoides/metabolismo , Transdução de Sinais
3.
Cells ; 11(3)2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35159331

RESUMO

DNA mismatch repair (MMR) is a highly conserved pathway that corrects both base-base mispairs and insertion-deletion loops (IDLs) generated during DNA replication. Defects in MMR have been linked to carcinogenesis and drug resistance. However, the regulation of MMR is poorly understood. Interestingly, CNOT6 is one of four deadenylase subunits in the conserved CCR4-NOT complex and it targets poly(A) tails of mRNAs for degradation. CNOT6 is overexpressed in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML) and androgen-independent prostate cancer cells, which suggests that an altered expression of CNOT6 may play a role in tumorigenesis. Here, we report that a depletion of CNOT6 sensitizes human U2OS cells to N-methyl-N'nitro-N-nitrosoguanidine (MNNG) and leads to enhanced apoptosis. We also demonstrate that the depletion of CNOT6 upregulates MMR and decreases the mutation frequency in MMR-proficient cells. Furthermore, the depletion of CNOT6 increases the stability of mRNA transcripts from MMR genes, leading to the increased expression of MMR proteins. Our work provides insight into a novel CNOT6-dependent mechanism for regulating MMR.


Assuntos
Reparo de Erro de Pareamento de DNA , Replicação do DNA , Apoptose/genética , Reparo de Erro de Pareamento de DNA/genética , Humanos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Sci Rep ; 11(1): 8226, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859228

RESUMO

Age-related macular degeneration (AMD) is a highly prevalent degenerative disease and a leading cause of vision loss worldwide. Evidence for an inflammatory component in the development of AMD exists, yet the exact mechanisms remain unclear. Bisretinoid N-retinylidene-N-retinylethanolamine (A2E) in retinal pigmental epithelial (RPE) cells, and in extracellular deposits constitutes a hallmark of AMD, but its role in the pathology of AMD is elusive. Here, we tested the hypothesis that A2E is responsible for the heightened inflammatory activity in AMD. To this end, we measured ex vivo mRNA expression of the cytokines TNF-α, IL-6, and IL-10 in whole blood samples after stimulation with A2E in a clinical sample of 27 patients with neovascular AMD and 24 patients with geographic atrophy secondary to AMD. Patients' spouses (n = 30) were included as non-affected controls. After stimulation with A2E, no statistical differences were found in the median expression level of TNF-α, IL-6, IL-10 between the control group, and the neovascular AMD and the geographic atrophy group. Our findings do not support evidence for the hypothesis, that A2E per se contributes to heightened inflammatory activity in AMD.


Assuntos
Células Sanguíneas/efeitos dos fármacos , Citocinas/metabolismo , Degeneração Macular/sangue , Retinoides/farmacologia , Idoso , Idoso de 80 Anos ou mais , Células Sanguíneas/fisiologia , Estudos de Casos e Controles , Feminino , Atrofia Geográfica/sangue , Atrofia Geográfica/tratamento farmacológico , Atrofia Geográfica/metabolismo , Atrofia Geográfica/patologia , Humanos , Técnicas In Vitro , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Masculino , Retinoides/uso terapêutico
5.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937838

RESUMO

The Ku70/80 heterodimer binds to DNA ends and attracts other proteins involved in the non-homologous end-joining (NHEJ) pathway of DNA double-strand break repair. We developed a novel assay to measure DNA binding and release kinetics using differences in Förster resonance energy transfer (FRET) of the ECFP-Ku70/EYFP-Ku80 heterodimer in soluble and DNA end bound states. We confirmed that the relative binding efficiencies of various DNA substrates (blunt, 3 nucleotide 5' extension, and DNA hairpin) measured in the FRET assay reflected affinities obtained from direct measurements using surface plasmon resonance. The FRET assay was subsequently used to investigate Ku70/80 behavior in the context of a DNA-dependent kinase (DNA-PK) holocomplex. As expected, this complex was much more stable than Ku70/80 alone, and its stability was influenced by DNA-PK phosphorylation status. Interestingly, the Ku80 C-terminal extension contributed to DNA-PK complex stability but was not absolutely required for its formation. The Ku70 C-terminal SAP domain, on the other hand, was required for the stable association of Ku70/80 to DNA ends, but this effect was abrogated in DNA-PK holocomplexes. We conclude that FRET measurements can be used to determine Ku70/80 binding kinetics. The ability to do this in complex mixtures makes this assay particularly useful to study larger NHEJ protein complexes on DNA ends.


Assuntos
Proteínas de Ligação a DNA/genética , DNA/genética , Autoantígeno Ku/genética , Proteínas Nucleares/genética , Animais , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Proteína Quinase Ativada por DNA/genética , Transferência Ressonante de Energia de Fluorescência/métodos , Camundongos , Fosforilação/genética
6.
Nucleic Acids Res ; 47(22): 11709-11728, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31647095

RESUMO

The A-type lamins (lamin A/C), encoded by the LMNA gene, are important structural components of the nuclear lamina. LMNA mutations lead to degenerative disorders known as laminopathies, including the premature aging disease Hutchinson-Gilford progeria syndrome. In addition, altered lamin A/C expression is found in various cancers. Reports indicate that lamin A/C plays a role in DNA double strand break repair, but a role in DNA base excision repair (BER) has not been described. We provide evidence for reduced BER efficiency in lamin A/C-depleted cells (Lmna null MEFs and lamin A/C-knockdown U2OS). The mechanism involves impairment of the APE1 and POLß BER activities, partly effectuated by associated reduction in poly-ADP-ribose chain formation. Also, Lmna null MEFs displayed reduced expression of several core BER enzymes (PARP1, LIG3 and POLß). Absence of Lmna led to accumulation of 8-oxoguanine (8-oxoG) lesions, and to an increased frequency of substitution mutations induced by chronic oxidative stress including GC>TA transversions (a fingerprint of 8-oxoG:A mismatches). Collectively, our results provide novel insights into the functional interplay between the nuclear lamina and cellular defenses against oxidative DNA damage, with implications for cancer and aging.


Assuntos
Reparo do DNA/genética , Lamina Tipo A/fisiologia , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Animais , Células Cultivadas , Dano ao DNA/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Análise em Microsséries , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Estresse Oxidativo/genética , Progéria/genética
7.
Genet Med ; 21(7): 1486-1496, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30504929

RESUMO

PURPOSE: To enhance classification of variants of uncertain significance (VUS) in the DNA mismatch repair (MMR) genes in the cancer predisposition Lynch syndrome, we developed the cell-free in vitro MMR activity (CIMRA) assay. Here, we calibrate and validate the assay, enabling its integration with in silico and clinical data. METHODS: Two sets of previously classified MLH1 and MSH2 variants were selected from a curated MMR gene database, and their biochemical activity determined by the CIMRA assay. The assay was calibrated by regression analysis followed by symmetric cross-validation and Bayesian integration with in silico predictions of pathogenicity. CIMRA assay reproducibility was assessed in four laboratories. RESULTS: Concordance between the training runs met our prespecified validation criterion. The CIMRA assay alone correctly classified 65% of variants, with only 3% discordant classification. Bayesian integration with in silico predictions of pathogenicity increased the proportion of correctly classified variants to 87%, without changing the discordance rate. Interlaboratory results were highly reproducible. CONCLUSION: The CIMRA assay accurately predicts pathogenic and benign MMR gene variants. Quantitative combination of assay results with in silico analysis correctly classified the majority of variants. Using this calibration, CIMRA assay results can be integrated into the diagnostic algorithm for MMR gene variants.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Técnicas Genéticas , Células 3T3 , Animais , Teorema de Bayes , Calibragem , Simulação por Computador , Humanos , Técnicas In Vitro , Camundongos , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Int J Mol Sci ; 20(1)2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30585186

RESUMO

Human exonuclease 1 (EXO1), a 5'→3' exonuclease, contributes to the regulation of the cell cycle checkpoints, replication fork maintenance, and post replicative DNA repair pathways. These processes are required for the resolution of stalled or blocked DNA replication that can lead to replication stress and potential collapse of the replication fork. Failure to restart the DNA replication process can result in double-strand breaks, cell-cycle arrest, cell death, or cellular transformation. In this review, we summarize the involvement of EXO1 in the replication, DNA repair pathways, cell cycle checkpoints, and the link between EXO1 and cancer.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Replicação do DNA , Exodesoxirribonucleases/metabolismo , Apoptose , Pontos de Checagem do Ciclo Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Recombinação Homóloga , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
9.
N Engl J Med ; 378(5): 491-492, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29385361

Assuntos
Reparo do DNA , Humanos
11.
Nucleic Acids Res ; 45(16): 9427-9440, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934474

RESUMO

DNA mismatch repair (MMR) is a highly-conserved DNA repair mechanism, whose primary role is to remove DNA replication errors preventing them from manifesting as mutations, thereby increasing the overall genome stability. Defects in MMR are associated with increased cancer risk in humans and other organisms. Here, we characterize the interaction between MMR and a proofreading-deficient allele of the human replicative DNA polymerase delta, PolδD316A;E318A, which has a higher capacity for strand displacement DNA synthesis than wild type Polδ. Human cell lines overexpressing PolδD316A;E318A display a mild mutator phenotype, while nuclear extracts of these cells exhibit reduced MMR activity in vitro, and these defects are complemented by overexpression or addition of exogenous human Exonuclease 1 (EXO1). By contrast, another proofreading-deficient mutant, PolδD515V, which has a weaker strand displacement activity, does not decrease the MMR activity as significantly as PolδD316A;E318A. In addition, PolδD515V does not increase the mutation frequency in MMR-proficient cells. Based on our findings, we propose that the proofreading activity restricts the strand displacement activity of Polδ in MMR. This contributes to maintain the nicks required for EXO1 entry, and in this manner ensures the dominance of the EXO1-dependent MMR pathway.


Assuntos
Reparo de Erro de Pareamento de DNA , DNA Polimerase III/metabolismo , Mutação , Metilação de DNA/efeitos dos fármacos , DNA Polimerase III/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Células HeLa , Humanos , Metilnitronitrosoguanidina/farmacologia
12.
Mutat Res Rev Mutat Res ; 773: 174-187, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28927527

RESUMO

DNA mismatch repair (MMR) is an important DNA repair pathway that plays critical roles in DNA replication fidelity, mutation avoidance and genome stability, all of which contribute significantly to the viability of cells and organisms. MMR is widely-used as a diagnostic biomarker for human cancers in the clinic, and as a biomarker of cancer susceptibility in animal model systems. Prokaryotic MMR is well-characterized at the molecular and mechanistic level; however, MMR is considerably more complex in eukaryotic cells than in prokaryotic cells, and in recent years, it has become evident that MMR plays novel roles in eukaryotic cells, several of which are not yet well-defined or understood. Many MMR-deficient human cancer cells lack mutations in known human MMR genes, which strongly suggests that essential eukaryotic MMR components/cofactors remain unidentified and uncharacterized. Furthermore, the mechanism by which the eukaryotic MMR machinery discriminates between the parental (template) and the daughter (nascent) DNA strand is incompletely understood and how cells choose between the EXO1-dependent and the EXO1-independent subpathways of MMR is not known. This review summarizes recent literature on eukaryotic MMR, with emphasis on the diverse cellular roles of eukaryotic MMR proteins, the mechanism of strand discrimination and cross-talk/interactions between and co-regulation of MMR and other DNA repair pathways in eukaryotic cells. The main conclusion of the review is that MMR proteins contribute to genome stability through their ability to recognize and promote an appropriate cellular response to aberrant DNA structures, especially when they arise during DNA replication. Although the molecular mechanism of MMR in the eukaryotic cell is still not completely understood, increased used of single-molecule analyses in the future may yield new insight into these unsolved questions.


Assuntos
Reparo de Erro de Pareamento de DNA , Células Eucarióticas/metabolismo , Animais , Replicação do DNA , Instabilidade Genômica , Humanos , Mutação , Análise de Sequência de DNA
13.
Crit Rev Biochem Mol Biol ; 51(6): 440-451, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27494243

RESUMO

Exonuclease 1 (EXO1) is a multifunctional 5' → 3' exonuclease and a DNA structure-specific DNA endonuclease. EXO1 plays roles in DNA replication, DNA mismatch repair (MMR) and DNA double-stranded break repair (DSBR) in lower and higher eukaryotes and contributes to meiosis, immunoglobulin maturation, and micro-mediated end-joining in higher eukaryotes. In human cells, EXO1 is also thought to play a role in telomere maintenance. Mutations in the human EXO1 gene correlate with increased susceptibility to some cancers. This review summarizes recent studies on the enzymatic functions and biological roles of EXO1, its possible protective role against cancer and aging, and regulation of EXO1 by posttranslational modification.


Assuntos
Envelhecimento , Reparo do DNA , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Neoplasias/genética , Animais , Quebras de DNA , Exodesoxirribonucleases/análise , Humanos , Meiose , Mutação , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional
14.
Cell Rep ; 16(1): 161-173, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27320928

RESUMO

The RecQ helicase RECQL4, mutated in Rothmund-Thomson syndrome, regulates genome stability, aging, and cancer. Here, we identify a crucial role for RECQL4 in DNA end resection, which is the initial and an essential step of homologous recombination (HR)-dependent DNA double-strand break repair (DSBR). Depletion of RECQL4 severely reduces HR-mediated repair and 5' end resection in vivo. RECQL4 physically interacts with MRE11-RAD50-NBS1 (MRN), which senses DSBs and initiates DNA end resection with CtIP. The MRE11 exonuclease regulates the retention of RECQL4 at laser-induced DSBs. RECQL4 also directly interacts with CtIP via its N-terminal domain and promotes CtIP recruitment to the MRN complex at DSBs. Moreover, inactivation of RECQL4's helicase activity impairs DNA end processing and HR-dependent DSBR without affecting its interaction with MRE11 and CtIP, suggesting an important role for RECQL4's unwinding activity in the process. Thus, we report that RECQL4 is an important participant in HR-dependent DSBR.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , RecQ Helicases/metabolismo , Proteínas de Transporte , Linhagem Celular Tumoral , Enzimas Reparadoras do DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Humanos , Proteína Homóloga a MRE11/metabolismo , Proteínas Nucleares , Reparo de DNA por Recombinação , Proteína de Replicação A/metabolismo , Proteínas Repressoras
15.
Front Biosci (Landmark Ed) ; 21(3): 514-27, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26709791

RESUMO

Non-homologous end-joining (NHEJ) is an essential DNA double strand break repair pathway during all cell cycle stages. Deficiency in NHEJ factors can lead to accumulation of unrepaired DNA breaks or faulty DNA repair, which may ultimately result in cell death, senescence or carcinogenesis. The Ku70/80 heterodimer is a key-player in the NHEJ pathway and binds to DNA termini with high affinity, where it helps to protect DNA ends from degradation and to recruit other NHEJ factors required for repair. The mechanism of Ku70/80 detachment from the DNA helix after completion of DNA repair is incompletely understood. Some data suggest that certain DNA repair factors are ubiquitylated and targeted for proteasomal degradation after repair. Recent studies suggest that Ku80 is conjugated to lysine48-linked ubiquitin chains by the Skp1-Cullin-F-box (SCF) complex and/or the RING finger protein 8 (RNF8) ubiquitin-protein ligases, followed by rapid proteasomal degradation. In this review we address the structure and function of the Ku70/80 heterodimer and how ubiquitylation may affect the release of Ku70/80 from chromatin and its subsequent degradation via the ubiquitin-proteasome system.


Assuntos
Antígenos Nucleares/fisiologia , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/fisiologia , Dano ao DNA , Reparo do DNA , Autoantígeno Ku , Ubiquitina-Proteína Ligases/metabolismo
16.
Aging (Albany NY) ; 7(10): 793-815, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26539816

RESUMO

AIMS: Accurate biomarkers for early diagnosis of Alzheimer's disease (AD) are badly needed. Recent reports suggest that dysfunctional mitochondria and DNA damage are associated with AD development. In this report, we measured various cellular parameters, related to mitochondrial bioenergetics and DNA damage, in peripheral blood mononuclear cells (PBMCs) of AD and control participants, for biomarker discovery. METHODS: PBMCs were isolated from 53 patients with AD of mild to moderate degree and 30 age-matched healthy controls. Tests were performed on the PBMCs from as many of these participants as possible. We measured glycolysis and mitochondrial respiration fluxes using the Seahorse Bioscience flux analyzer, mitochondrial ROS production using flow cytometry, dNTP levels by way of a DNA polymerization assay, DNA strand breaks using the Fluorometric detection of Alkaline DNA Unwinding (FADU) assay, and APE1 incision activity (in cell lysates) on a DNA substrate containing an AP site (to estimate DNA repair efficiency). RESULTS: In the PBMCs of AD patients, we found reduced basal mitochondrial oxygen consumption, reduced proton leak, higher dATP level, and lower AP endonuclease 1 activity, depending on adjustments for gender and/or age. CONCLUSIONS: This study reveals impaired mitochondrial respiration, altered dNTP pools and reduced DNA repair activity in PBMCs of AD patients, thus suggesting that these biochemical activities may be useful as biomarkers for AD.


Assuntos
Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Quebras de DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Mitocôndrias/metabolismo , Fatores Etários , Idoso , Biomarcadores/metabolismo , Estudos de Casos e Controles , Respiração Celular , Cognição , Metabolismo Energético , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Nucleotídeos/metabolismo , Fatores Sexuais
17.
Mitochondrion ; 25: 34-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26408413

RESUMO

Mitochondrial bioenergetics, mitochondrial reactive oxygen species (ROS) and cellular levels of nucleotides have been hypothesized as early indicators of Alzheimer's disease (AD). Utilizing relative decline of cognitive ability as a predictor of AD risk, we evaluated the correlation between change of cognitive ability and mitochondrial bioenergetics, ROS and cellular levels of deoxyribonucleotides. Change of cognitive abilities, scored at ages of approximately 20 and 57 was determined for a cohort of 1985 male participants. Mitochondrial bioenergetics, mitochondrial ROS and whole-cell levels of deoxyribonucleotide triphosphates were measured in peripheral blood mononuclear cells (PBMCs) from a total of 103 selected participants displaying the most pronounced relative cognitive decline and relative cognitive improvement. We show that relative cognitive decline is associated with higher PBMC content of deoxythymidine-triphosphate (dTTP) (20%), but not mitochondrial bioenergetics parameters measured in this study or mitochondrial ROS. Levels of dTTP in PBMCs are indicators of relative cognitive change suggesting a role of deoxyribonucleotides in the etiology of AD.


Assuntos
Doença de Alzheimer/patologia , Metabolismo Energético , Leucócitos Mononucleares/química , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/análise , Nucleotídeos de Timina/análise , Estudos de Coortes , Humanos , Masculino
18.
Biosci Rep ; 35(3)2015 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-26182368

RESUMO

Human exonuclease 1 (EXO1) is involved in multiple DNA metabolism processes, including DNA repair and replication. Most of the fundamental roles of EXO1 have been described in yeast. Here, we report a biochemical characterization of human full-length EXO1. Prior to assay EXO1 on different DNA flap structures, we determined factors essential for the thermodynamic stability of EXO1. We show that enzymatic activity and stability of EXO1 on DNA is modulated by temperature. By characterization of EXO1 flap activity using various DNA flap substrates, we show that EXO1 has a strong capacity for degrading double stranded DNA and has a modest endonuclease or 5' flap activity. Furthermore, we report novel mechanistic insights into the processing of flap structures, showing that EXO1 preferentially cleaves one nucleotide inwards in a double stranded region of a forked and nicked DNA flap substrates, suggesting a possible role of EXO1 in strand displacement.


Assuntos
Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , DNA/metabolismo , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , DNA/química , Estabilidade Enzimática , Humanos , Conformação de Ácido Nucleico , Especificidade por Substrato , Temperatura , Termodinâmica
19.
Crit Rev Biochem Mol Biol ; 49(6): 463-72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25048400

RESUMO

DNA double-strand breaks are highly toxic DNA lesions that cause genomic instability, if not efficiently repaired. RecQ helicases are a family of highly conserved proteins that maintain genomic stability through their important roles in several DNA repair pathways, including DNA double-strand break repair. Double-strand breaks can be repaired by homologous recombination (HR) using sister chromatids as templates to facilitate precise DNA repair, or by an HR-independent mechanism known as non-homologous end-joining (NHEJ) (error-prone). NHEJ is a non-templated DNA repair process, in which DNA termini are directly ligated. Canonical NHEJ requires DNA-PKcs and Ku70/80, while alternative NHEJ pathways are DNA-PKcs and Ku70/80 independent. This review discusses the role of RecQ helicases in NHEJ, alternative (or back-up) NHEJ (B-NHEJ) and microhomology-mediated end-joining (MMEJ) in V(D)J recombination, class switch recombination and telomere maintenance.


Assuntos
Reparo do DNA por Junção de Extremidades , RecQ Helicases/metabolismo , Envelhecimento , Animais , DNA/genética , DNA/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Telômero/genética , Telômero/metabolismo , Recombinação V(D)J
20.
Carcinogenesis ; 35(11): 2415-24, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24942867

RESUMO

RECQL4, a member of the RecQ helicase family, is a multifunctional participant in DNA metabolism. RECQL4 protein participates in several functions both in the nucleus and in the cytoplasm of the cell, and mutations in human RECQL4 are associated with three genetic disorders: Rothmund-Thomson, RAPADILINO and Baller-Gerold syndromes. We previously reported that RECQL4 is recruited to laser-induced DNA double-strand breaks (DSB). Here, we have characterized the functional roles of RECQL4 in the non-homologous end joining (NHEJ) pathway of DSB repair. In an in vitro NHEJ assay that depends on the activity of DNA-dependent protein kinase (DNA-PK), extracts from RECQL4 knockdown cells display reduced end-joining activity on DNA substrates with cohesive and non-cohesive ends. Depletion of RECQL4 also reduced the end joining activity on a GFP reporter plasmid in vivo. Knockdown of RECQL4 increased the sensitivity of cells to γ-irradiation and resulted in accumulation of 53BP1 foci after irradiation, indicating defects in the processing of DSB. We find that RECQL4 interacts with the Ku70/Ku80 heterodimer, part of the DNA-PK complex, via its N-terminal domain. Further, RECQL4 stimulates higher order DNA binding of Ku70/Ku80 to a blunt end DNA substrate. Taken together, these results implicate that RECQL4 participates in the NHEJ pathway of DSB repair via a functional interaction with the Ku70/Ku80 complex. This is the first study to provide both in vitro and in vivo evidence for a role of a RecQ helicase in NHEJ.


Assuntos
Antígenos Nucleares/genética , Reparo do DNA por Junção de Extremidades/genética , Proteínas de Ligação a DNA/genética , RecQ Helicases/genética , Síndrome de Rothmund-Thomson/genética , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Proteína Quinase Ativada por DNA/genética , Raios gama , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Autoantígeno Ku , Tolerância a Radiação/genética , RecQ Helicases/antagonistas & inibidores , Síndrome de Rothmund-Thomson/patologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA