Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Neurosci ; 44(25)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38769007

RESUMO

Even in the absence of specific sensory input or a behavioral task, the brain produces structured patterns of activity. This organized activity is modulated by changes in arousal. Here, we use wide-field voltage imaging to establish how arousal relates to cortical network voltage and hemodynamic activity in spontaneously behaving head-fixed male and female mice expressing the voltage-sensitive fluorescent FRET sensor Butterfly 1.2. We find that global voltage and hemodynamic signals are both positively correlated with changes in arousal with a maximum correlation of 0.5 and 0.25, respectively, at a time lag of 0 s. We next show that arousal influences distinct cortical regions for both voltage and hemodynamic signals. These include a broad positive correlation across most sensory-motor cortices extending posteriorly to the primary visual cortex observed in both signals. In contrast, activity in the prefrontal cortex is positively correlated to changes in arousal for the voltage signal while it is a slight net negative correlation observed in the hemodynamic signal. Additionally, we show that coherence between voltage and hemodynamic signals relative to arousal is strongest for slow frequencies below 0.15 Hz and is near zero for frequencies >1 Hz. We finally show that coupling patterns are dependent on the behavioral state of the animal with correlations being driven by periods of increased orofacial movement. Our results indicate that while hemodynamic signals show strong relations to behavior and arousal, these relations are distinct from those observed by voltage activity.


Assuntos
Nível de Alerta , Hemodinâmica , Rede Nervosa , Animais , Nível de Alerta/fisiologia , Camundongos , Masculino , Feminino , Hemodinâmica/fisiologia , Rede Nervosa/fisiologia , Córtex Cerebral/fisiologia , Camundongos Endogâmicos C57BL
2.
Am J Physiol Renal Physiol ; 327(1): F113-F127, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38660712

RESUMO

The kidneys maintain fluid-electrolyte balance and excrete waste in the presence of constant fluctuations in plasma volume and systemic blood pressure. The kidneys perform these functions to control capillary perfusion and glomerular filtration by modulating the mechanisms of autoregulation. An effect of these modulations are spontaneous, natural fluctuations in glomerular perfusion. Numerous other mechanisms can lead to fluctuations in perfusion and flow. The ability to monitor these spontaneous physiological fluctuations in vivo could facilitate the early detection of kidney disease. The goal of this work was to investigate the use of resting-state magnetic resonance imaging (rsMRI) to detect spontaneous physiological fluctuations in the kidney. We performed rsMRI of rat kidneys in vivo over 10 min, applying motion correction to resolve time series in each voxel. We observed spatially variable, spontaneous fluctuations in rsMRI signal between 0 and 0.3 Hz, in frequency bands associated with autoregulatory mechanisms. We further applied rsMRI to investigate changes in these fluctuations in a rat model of diabetic nephropathy. Spectral analysis was performed on time series of rsMRI signals in the kidney cortex and medulla. The power from spectra in specific frequency bands from the cortex correlated with severity of glomerular pathology caused by diabetic nephropathy. Finally, we investigated the feasibility of using rsMRI of the human kidney in two participants, observing the presence of similar, spatially variable fluctuations. This approach may enable a range of preclinical and clinical investigations of kidney function and facilitate the development of new therapies to improve outcomes in patients with kidney disease.NEW & NOTEWORTHY This work demonstrates the development and use of resting-state MRI to detect low-frequency, spontaneous physiological fluctuations in the kidney consistent with previously observed fluctuations in perfusion and potentially due to autoregulatory function. These fluctuations are detectable in rat and human kidneys, and the power of these fluctuations is affected by diabetic nephropathy in rats.


Assuntos
Nefropatias Diabéticas , Rim , Imageamento por Ressonância Magnética , Ratos Sprague-Dawley , Animais , Nefropatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Rim/fisiopatologia , Rim/diagnóstico por imagem , Ratos , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/diagnóstico por imagem , Circulação Renal , Humanos , Homeostase/fisiologia
3.
Cogn Affect Behav Neurosci ; 24(1): 111-125, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38253775

RESUMO

The mechanisms for how large-scale brain networks contribute to sustained attention are unknown. Attention fluctuates from moment to moment, and this continuous change is consistent with dynamic changes in functional connectivity between brain networks involved in the internal and external allocation of attention. In this study, we investigated how brain network activity varied across different levels of attentional focus (i.e., "zones"). Participants performed a finger-tapping task, and guided by previous research, in-the-zone performance or state was identified by low reaction time variability and out-of-the-zone as the inverse. In-the-zone sessions tended to occur earlier in the session than out-of-the-zone blocks. This is unsurprising given the way attention fluctuates over time. Employing a novel method of time-varying functional connectivity, called the quasi-periodic pattern analysis (i.e., reliable, network-level low-frequency fluctuations), we found that the activity between the default mode network (DMN) and task positive network (TPN) is significantly more anti-correlated during in-the-zone states versus out-of-the-zone states. Furthermore, it is the frontoparietal control network (FPCN) switch that differentiates the two zone states. Activity in the dorsal attention network (DAN) and DMN were desynchronized across both zone states. During out-of-the-zone periods, FPCN synchronized with DMN, while during in-the-zone periods, FPCN switched to synchronized with DAN. In contrast, the ventral attention network (VAN) synchronized more closely with DMN during in-the-zone periods compared with out-of-the-zone periods. These findings demonstrate that time-varying functional connectivity of low frequency fluctuations across different brain networks varies with fluctuations in sustained attention or other processes that change over time.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Tempo de Reação
5.
Artigo em Inglês | MEDLINE | ID: mdl-37701786

RESUMO

One prominent feature of the infraslow BOLD signal during rest or task is quasi-periodic spatiotemporal pattern (QPP) of signal changes that involves an alternation of activity in key functional networks and propagation of activity across brain areas, and that is known to tie to the infraslow neural activity involved in attention and arousal fluctuations. This ongoing whole-brain pattern of activity might potentially modify the response to incoming stimuli or be modified itself by the induced neural activity. To investigate this, we presented checkerboard sequences flashing at 6Hz to subjects. This is a salient visual stimulus that is known to produce a strong response in visual processing regions. Two different visual stimulation sequences were employed, a systematic stimulation sequence in which the visual stimulus appeared every 20.3 secs and a random stimulation sequence in which the visual stimulus occurred randomly every 14~62.3 secs. Three central observations emerged. First, the two different stimulation conditions affect the QPP waveform in different aspects, i.e., systematic stimulation has greater effects on its phase and random stimulation has greater effects on its magnitude. Second, the QPP was more frequent in the systematic condition with significantly shorter intervals between consecutive QPPs compared to the random condition. Third, the BOLD signal response to the visual stimulus across both conditions was swamped by the QPP at the stimulus onset. These results provide novel insights into the relationship between intrinsic patterns and stimulated brain activity.

6.
Neuroimage ; 276: 120165, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172663

RESUMO

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

7.
Front Neurosci ; 16: 909999, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003960

RESUMO

A number of studies point to slow (0.1-2 Hz) brain rhythms as the basis for the resting-state functional magnetic resonance imaging (rsfMRI) signal. Slow waves exist in the absence of stimulation, propagate across the cortex, and are strongly modulated by vigilance similar to large portions of the rsfMRI signal. However, it is not clear if slow rhythms serve as the basis of all neural activity reflected in rsfMRI signals, or just the vigilance-dependent components. The rsfMRI data exhibit quasi-periodic patterns (QPPs) that appear to increase in strength with decreasing vigilance and propagate across the brain similar to slow rhythms. These QPPs can complicate the estimation of functional connectivity (FC) via rsfMRI, either by existing as unmodeled signal or by inducing additional wide-spread correlation between voxel-time courses of functionally connected brain regions. In this study, we examined the relationship between cortical slow rhythms and the rsfMRI signal, using a well-established pharmacological model of slow wave suppression. Suppression of cortical slow rhythms led to significant reduction in the amplitude of QPPs but increased rsfMRI measures of intrinsic FC in rats. The results suggest that cortical slow rhythms serve as the basis of only the vigilance-dependent components (e.g., QPPs) of rsfMRI signals. Further attenuation of these non-specific signals enhances delineation of brain functional networks.

8.
Nat Neurosci ; 25(8): 1093-1103, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35902649

RESUMO

Resting-state functional magnetic resonance imaging (MRI) has yielded seemingly disparate insights into large-scale organization of the human brain. The brain's large-scale organization can be divided into two broad categories: zero-lag representations of functional connectivity structure and time-lag representations of traveling wave or propagation structure. In this study, we sought to unify observed phenomena across these two categories in the form of three low-frequency spatiotemporal patterns composed of a mixture of standing and traveling wave dynamics. We showed that a range of empirical phenomena, including functional connectivity gradients, the task-positive/task-negative anti-correlation pattern, the global signal, time-lag propagation patterns, the quasiperiodic pattern and the functional connectome network structure, are manifestations of these three spatiotemporal patterns. These patterns account for much of the global spatial structure that underlies functional connectivity analyses and unifies phenomena in resting-state functional MRI previously thought distinct.


Assuntos
Conectoma , Descanso , Encéfalo , Conectoma/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2968-2971, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891868

RESUMO

Functional magnetic resonance imaging (fMRI) is a powerful tool that allows for analysis of neural activity via the measurement of blood-oxygenation-level-dependent (BOLD) signal. The BOLD fluctuations can exhibit different levels of complexity, depending upon the conditions under which they are measured. We examined the complexity of both resting-state and task-based fMRI using sample entropy (SampEn) as a surrogate for signal predictability. We found that within most tasks, regions of the brain that were deemed task-relevant displayed significantly low levels of SampEn, and there was a strong negative correlation between parcel entropy and amplitude.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Entropia , Análise de Sistemas
10.
Neuroimage ; 244: 118588, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607021

RESUMO

Recent resting-state fMRI studies have shown that brain activity exhibits temporal variations in functional connectivity by using various approaches including sliding window correlation, co-activation patterns, independent component analysis, quasi-periodic patterns, and hidden Markov models. These methods often model the brain activity as a discretized hopping among several brain states that are defined by the spatial configurations of network activity. However, the discretized states are merely a simplification of what is likely to be a continuous process, where each network evolves over time following its unique path. To model these characteristic spatiotemporal trajectories, we trained a variational autoencoder using rs-fMRI data and evaluated the spatiotemporal features of the latent variables obtained from the trained networks. Our results suggest that there are a relatively small number of approximately orthogonal whole-brain spatiotemporal patterns that capture the most prominent features of rs-fMRI data, which can serve as the building blocks to construct all possible spatiotemporal dynamics in resting state fMRI. These spatiotemporal patterns provide insight into how activity flows across the brain in concordance with known network structures and functional connectivity gradients.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Humanos
11.
Neuroimage ; 227: 117628, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33316394

RESUMO

The macro-scale intrinsic functional network architecture of the human brain has been well characterized. Early studies revealed robust and enduring patterns of static connectivity, while more recent work has begun to explore the temporal dynamics of these large-scale brain networks. Little work to date has investigated directed connectivity within and between these networks, or the temporal patterns of afferent (input) and efferent (output) connections between network nodes. Leveraging a novel analytic approach, prediction correlation, we investigated the causal interactions within and between large-scale networks of the brain using resting state fMRI. This technique allows us to characterize information transfer between brain regions in both the spatial (direction) and temporal (duration) scales. Using data from the Human Connectome Project (N = 200) we applied prediction correlation techniques to four resting-state fMRI scans (each scan has TRs = 1200). Three central observations emerged. First, the strongest and longest duration connections were observed within the somatomotor, visual, and dorsal attention networks. Second, the short duration connections were observed for high-degree nodes in the visual and default networks, as well as in the hippocampus. Specifically, the connectivity profile of the highest-degree nodes was dominated by efferent connections to multiple cortical areas. Moderate high-degree nodes, particularly in hippocampal regions, showed an afferent connectivity profile. Finally, multimodal association nodes in lateral prefrontal brain regions demonstrated a short duration, bidirectional connectivity profile, consistent with this region's role in integrative and modulatory processing. These results provide novel insights into the spatiotemporal dynamics of human brain function.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma , Rede Nervosa/diagnóstico por imagem , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Descanso , Adulto Jovem
13.
Cereb Cortex ; 31(3): 1511-1522, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33108464

RESUMO

How do intrinsic brain dynamics interact with processing of external sensory stimuli? We sought new insights using functional magnetic resonance imaging to track spatiotemporal activity patterns at the whole brain level in lightly anesthetized mice, during both resting conditions and visual stimulation trials. Our results provide evidence that quasiperiodic patterns (QPPs) are the most prominent component of mouse resting brain dynamics. These QPPs captured the temporal alignment of anticorrelation between the default mode (DMN)- and task-positive (TPN)-like networks, with global brain fluctuations, and activity in neuromodulatory nuclei of the reticular formation. Specifically, the phase of QPPs prior to stimulation could significantly stratify subsequent visual response magnitude, suggesting QPPs relate to brain state fluctuations. This is the first observation in mice that dynamics of the DMN- and TPN-like networks, and particularly their anticorrelation, capture a brain state dynamic that affects sensory processing. Interestingly, QPPs also displayed transient onset response properties during visual stimulation, which covaried with deactivations in the reticular formation. We conclude that QPPs appear to capture a brain state fluctuation that may be orchestrated through neuromodulation. Our findings provide new frontiers to understand the neural processes that shape functional brain states and modulate sensory input processing.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Rede de Modo Padrão/fisiologia , Animais , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Estimulação Luminosa , Descanso/fisiologia
14.
Front Neurosci ; 14: 700, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714141

RESUMO

Resting-state functional magnetic resonance imaging (rs-fMRI) is an immensely powerful method in neuroscience that uses the blood oxygenation level-dependent (BOLD) signal to record and analyze neural activity in the brain. We examined the complexity of brain activity acquired by rs-fMRI to determine whether it exhibits variation across brain regions. In this study the complexity of regional brain activity was analyzed by calculating the sample entropy of 200 whole-brain BOLD volumes as well as of distinct brain networks, cortical regions, and subcortical regions of these brain volumes. It can be seen that different brain regions and networks exhibit distinctly different levels of entropy/complexity, and that entropy in the brain significantly differs between brains at rest and during task performance.

15.
Sci Rep ; 9(1): 16732, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31700115

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Front Neuroinform ; 13: 78, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038217

RESUMO

Animal whole-brain functional magnetic resonance imaging (fMRI) provides a non-invasive window into brain activity. A collection of associated methods aims to replicate observations made in humans and to identify the mechanisms underlying the distributed neuronal activity in the healthy and disordered brain. Animal fMRI studies have developed rapidly over the past years, fueled by the development of resting-state fMRI connectivity and genetically encoded neuromodulatory tools. Yet, comparisons between sites remain hampered by lack of standardization. Recently, we highlighted that mouse resting-state functional connectivity converges across centers, although large discrepancies in sensitivity and specificity remained. Here, we explore past and present trends within the animal fMRI community and highlight critical aspects in study design, data acquisition, and post-processing operations, that may affect the results and influence the comparability between studies. We also suggest practices aimed to promote the adoption of standards within the community and improve between-lab reproducibility. The implementation of standardized animal neuroimaging protocols will facilitate animal population imaging efforts as well as meta-analysis and replication studies, the gold standards in evidence-based science.

17.
Sci Rep ; 8(1): 10024, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968786

RESUMO

Resting state (rs)fMRI allows measurement of brain functional connectivity and has identified default mode (DMN) and task positive (TPN) network disruptions as promising biomarkers for Alzheimer's disease (AD). Quasi-periodic patterns (QPPs) of neural activity describe recurring spatiotemporal patterns that display DMN with TPN anti-correlation. We reasoned that QPPs could provide new insights into AD network dysfunction and improve disease diagnosis. We therefore used rsfMRI to investigate QPPs in old TG2576 mice, a model of amyloidosis, and age-matched controls. Multiple QPPs were determined and compared across groups. Using linear regression, we removed their contribution from the functional scans and assessed how they reflected functional connectivity. Lastly, we used elastic net regression to determine if QPPs improved disease classification. We present three prominent findings: (1) Compared to controls, TG2576 mice were marked by opposing neural dynamics in which DMN areas were anti-correlated and displayed diminished anti-correlation with the TPN. (2) QPPs reflected lowered DMN functional connectivity in TG2576 mice and revealed significantly decreased DMN-TPN anti-correlations. (3) QPP-derived measures significantly improved classification compared to conventional functional connectivity measures. Altogether, our findings provide insight into the neural dynamics of aberrant network connectivity in AD and indicate that QPPs might serve as a translational diagnostic tool.


Assuntos
Doença de Alzheimer/fisiopatologia , Amiloidose/patologia , Mapeamento Encefálico , Encéfalo/fisiopatologia , Vias Neurais/fisiopatologia , Animais , Imageamento por Ressonância Magnética , Camundongos , Camundongos Transgênicos
18.
Brain Connect ; 8(5): 255-267, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29924644

RESUMO

Dynamic functional connectivity metrics have much to offer to the neuroscience of individual differences of cognition. Yet, despite the recent expansion in dynamic connectivity research, limited resources have been devoted to the study of the reliability of these connectivity measures. To address this, resting-state functional magnetic resonance imaging data from 100 Human Connectome Project subjects were compared across 2 scan days. Brain states (i.e., patterns of coactivity across regions) were identified by classifying each time frame using k means clustering. This was done with and without global signal regression (GSR). Multiple gauges of reliability indicated consistency in the brain-state properties across days and GSR attenuated the reliability of the brain states. Changes in the brain-state properties across the course of the scan were investigated as well. The results demonstrate that summary metrics describing the clustering of individual time frames have adequate test/retest reliability, and thus, these patterns of brain activation may hold promise for individual-difference research.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Vias Neurais/fisiologia , Dinâmica não Linear , Análise de Variância , Nível de Alerta/fisiologia , Encéfalo/diagnóstico por imagem , Conectoma , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Movimento (Física) , Redes Neurais de Computação , Vias Neurais/diagnóstico por imagem , Oxigênio/sangue , Reprodutibilidade dos Testes , Fatores de Tempo
19.
Neuroimage ; 180(Pt B): 463-484, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29454935

RESUMO

Time-resolved 'dynamic' over whole-period 'static' analysis of low frequency (LF) blood-oxygen level dependent (BOLD) fluctuations provides many additional insights into the macroscale organization and dynamics of neural activity. Although there has been considerable advancement in the development of mouse resting state fMRI (rsfMRI), very little remains known about its dynamic repertoire. Here, we report for the first time the detection of a set of recurring spatiotemporal Quasi-Periodic Patterns (QPPs) in mice, which show spatial similarity with known resting state networks. Furthermore, we establish a close relationship between several of these patterns and the global signal. We acquired high temporal rsfMRI scans under conditions of low (LA) and high (HA) medetomidine-isoflurane anesthesia. We then employed the algorithm developed by Majeed et al. (2011), previously applied in rats and humans, which detects and averages recurring spatiotemporal patterns in the LF BOLD signal. One type of observed patterns in mice was highly similar to those originally observed in rats, displaying propagation from lateral to medial cortical regions, which suggestively pertain to a mouse Task-Positive like network (TPN) and Default Mode like network (DMN). Other QPPs showed more widespread or striatal involvement and were no longer detected after global signal regression (GSR). This was further supported by diminished detection of subcortical dynamics after GSR, with cortical dynamics predominating. Observed QPPs were both qualitatively and quantitatively determined to be consistent across both anesthesia conditions, with GSR producing the same outcome. Under LA, QPPs were consistently detected at both group and single subject level. Under HA, consistency and pattern occurrence rate decreased, whilst cortical contribution to the patterns diminished. These findings confirm the robustness of QPPs across species and demonstrate a new approach to study mouse LF BOLD spatiotemporal dynamics and mechanisms underlying functional connectivity. The observed impact of GSR on QPPs might help better comprehend its controversial role in conventional resting state studies. Finally, consistent detection of QPPs at single subject level under LA promises a step forward towards more reliable mouse rsfMRI and further confirms the importance of selecting an optimal anesthesia regime.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Rede Nervosa/fisiologia , Algoritmos , Animais , Encéfalo/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Interpretação de Imagem Assistida por Computador/métodos , Isoflurano/farmacologia , Imageamento por Ressonância Magnética/métodos , Masculino , Medetomidina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/efeitos dos fármacos , Descanso/fisiologia
20.
Neuroimage ; 167: 297-308, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29175200

RESUMO

Quasiperiodic patterns (QPPs) as reported by Majeed et al., 2011 are prominent features of the brain's intrinsic activity that involve important large-scale networks (default mode, DMN; task positive, TPN) and are likely to be major contributors to widely used measures of functional connectivity. We examined the variability of these patterns in 470 individuals from the Human Connectome Project resting state functional MRI dataset. The QPPs from individuals can be coarsely categorized into two types: one where strong anti-correlation between the DMN and TPN is present, and another where most areas are strongly correlated. QPP type could be predicted by an individual's global signal, with lower global signal corresponding to QPPs with strong anti-correlation. After regression of global signal, all QPPs showed strong anti-correlation between DMN and TPN. QPP occurrence and type was similar between a subgroup of individuals with extremely low motion and the rest of the sample, which shows that motion is not a major contributor to the QPPs. After regression of estimates of slow respiratory and cardiac induced signal fluctuations, more QPPs showed strong anti-correlation between DMN and TPN, an indication that while physiological noise influences the QPP type, it is not the primary source of the QPP itself. QPPs were more similar for the same subjects scanned on different days than for different subjects. These results provide the first assessment of the variability in individual QPPs and their relationship to physiological parameters.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Individualidade , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Adulto , Encéfalo/diagnóstico por imagem , Humanos , Rede Nervosa/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA