RESUMO
Pacific Northwest National Laboratory reports on the detection of 39Ar at the location of an underground nuclear explosion on the Nevada Nuclear Security Site. The presence of 39Ar was not anticipated at the outset of the experimental campaign but results from this work demonstrated that it is present, along with 37Ar and 85Kr in the subsurface at the site of an underground nuclear explosion. Our analysis showed that by using state-of-the-art technology optimized for radioargon measurements, it was difficult to distinguish 39Ar from the fission product 85Kr. Proportional counters are currently used for high-sensitivity measurement of 37Ar and 39Ar. Physical and chemical separation processes are used to separate argon from air or soil gas, yielding pure argon with contaminant gases reduced to the parts-per-million level or below. However, even with purification at these levels, the beta decay signature of 85Kr can be mistaken for that of 39Ar, and the presence of either isotope increases the measurement background level for the measurement of 37Ar. Measured values for the 39Ar measured at the site ranged from 36,000 milli- Becquerel/standard-cubic-meter-of-air (mBq/SCM) for shallow bore holes to 997,000 mBq/SCM from the rubble chimney from the underground nuclear explosion.
Assuntos
Argônio/análise , Armas Nucleares , Monitoramento de Radiação , Poluentes Radioativos/análise , NevadaRESUMO
As the world faces a challenging future in maintaining the commercial availability of radioactive isotopes for medical use, new methods of medical isotope production are being pursued. Many of these are small in size and could effectively operate continuously. With the potential for much shorter retention times, a new suite of isotopes may soon be found in the environment. The authors estimate that many more aerosols containing low-level isotopes of gas/volatile origin could be detectable at short range and times, and a few at longer ranges and times as compared to those released in more common nuclear reactor operations.
RESUMO
The Ultra-Low Background Liquid Scintillation Counter developed by Pacific Northwest National Laboratory will expand the application of liquid scintillation counting by enabling lower detection limits and smaller sample volumes. By reducing the overall count rate of the background environment approximately 2 orders of magnitude below that of commercially available systems, backgrounds on the order of tens of counts per day over an energy range of ~3-3600keV can be realized. Initial test results of the ULB LSC show promising results for ultra-low background detection with liquid scintillation counting.
RESUMO
This paper describes the generation of 39Ar, via reactor irradiation of potassium carbonate, followed by quantitative analysis (length-compensated proportional counting) to yield two calibration standards that are respectively 50 and 3 times atmospheric background levels. Measurements were performed in Pacific Northwest National Laboratory's shallow underground counting laboratory studying the effect of gas density on beta-transport; these results are compared with simulation. The total expanded uncertainty of the specific activity for the ~50× 39Ar in P10 standard is 3.6% (k=2).
RESUMO
Simultaneous measurement of tritium and (14)C would provide an added tool for tracing organic compounds through environmental systems and is possible via beta energy spectroscopy of sample-derived methane in internal-source gas proportional counters. Since the mid-1960's atmospheric tritium and (14)C have fallen dramatically as the isotopic injections from aboveground nuclear testing have been diluted into the ocean and biosphere. In this work, the feasibility of simultaneous tritium and (14)C measurements via proportional counters is revisited in light of significant changes in both the atmospheric and biosphere isotopics and the development of new ultra-low-background gas proportional counting capabilities for small samples (roughly 50 cc methane). A Geant4 Monte Carlo model of a Pacific Northwest National Laboratory (PNNL) proportional counter response to tritium and (14)C is used to analyze small samples of two different methane sources to illustrate the range of applicability of contemporary simultaneous measurements and their limitations. Because the two methane sources examined were not sample size limited, we could compare the small-sample measurements performed at PNNL with analysis of larger samples performed at a commercial laboratory. These first results show that the dual-isotope simultaneous measurement is well matched for methane samples that are atmospheric or have an elevated source of tritium (i.e. landfill gas). However, for samples with low/modern tritium isotopics (rainwater), commercial separation and counting is a better fit.
Assuntos
Radioisótopos de Carbono/análise , Metano/análise , Monitoramento de Radiação/métodos , Trítio/análise , Gases/análise , Modelos Teóricos , Instalações de Eliminação de Resíduos , Purificação da ÁguaRESUMO
Argon-37 is an environmental signature of an underground nuclear explosion. Producing and quantifying low-level (37)Ar standards is an important step in the development of sensitive field measurement instruments. This paper describes progress at Pacific Northwest National Laboratory in developing a process to generate and quantify low-level (37)Ar standards, which can be used to calibrate sensitive field systems at activities consistent with soil background levels. This paper presents a discussion of the measurement analysis, along with assumptions and uncertainty estimates.
RESUMO
Pacific Northwest National Laboratory has recently opened a shallow underground laboratory intended for measurement of low-concentration levels of radioactive isotopes in samples collected from the environment. The development of a low-background liquid scintillation counter is currently underway to further augment the measurement capabilities within this underground laboratory. Liquid scintillation counting is especially useful for measuring charged particle (e.g., ß and α) emitting isotopes with no (or very weak) gamma-ray yields. The combination of high-efficiency detection of charged particle emission in a liquid scintillation cocktail coupled with the low-background environment of an appropriately designed shield located in a clean underground laboratory provides the opportunity for increased-sensitivity measurements of a range of isotopes. To take advantage of the 35m-water-equivalent overburden of the underground laboratory, a series of simulations have evaluated the scintillation counter's shield design requirements to assess the possible background rate achievable. This report presents the design and background evaluation for a shallow underground, low background liquid scintillation counter design for sample measurements.
RESUMO
A new ultra-low-background proportional counter was recently developed with an internal volume of 100 cm(3) and has been characterized at pressures from 1-10 atm with P-10 (90% Ar, 10% methane) gas. This design, along with a counting system providing event digitization and passive and active shielding, has been developed to complement a new shallow underground laboratory (30 m water-equivalent). Backgrounds and low-level reference materials have been measured, and system sensitivity for (37)Ar has been calculated.
Assuntos
Argônio/análise , Gases/análise , Laboratórios , Radioisótopos/análise , Contagem de Cintilação/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados UnidosRESUMO
Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters-water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This paper describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. We conclude by presenting measurement targets and future opportunities.
RESUMO
Fifteen months of cumulative CoGeNT data are examined for indications of an annual modulation, a predicted signature of weakly interacting massive particle (WIMP) interactions. Presently available data support the presence of a modulated component of unknown origin, with parameters prima facie compatible with a galactic halo composed of light-mass WIMPs. Unoptimized estimators yield a statistical significance for a modulation of â¼2.8σ, limited by the short exposure.
RESUMO
We report on several features in the energy spectrum from an ultralow-noise germanium detector operated deep underground. By implementing a new technique able to reject surface events, a number of cosmogenic peaks can be observed for the first time. We discuss an irreducible excess of bulklike events below 3 keV in ionization energy. These could be caused by unknown backgrounds, but also dark matter interactions consistent with DAMA/LIBRA. It is not yet possible to determine their origin. Improved constraints are placed on a cosmological origin for the DAMA/LIBRA effect.
RESUMO
The International Monitoring System (IMS) of the Comprehensive Test Ban Treaty includes a network of stations and laboratories for collection and analysis of radioactive aerosols. Alternative approaches to IMS operations are considered as a method of enhancing treaty verification. Ultra-low background (ULB) detection promises the possibility of improvements to IMS minimum detectable activities (MDAs) well below the current approach, requiring MDA < or = 30 microBq/m(3) of air for (140)Ba, or about 10(6) fissions per daily sample.