Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 13(6): e0281922, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36409073

RESUMO

Mycobacteria use specialized type VII secretion systems (T7SSs) to secrete proteins across their diderm cell envelope. One of the T7SS subtypes, named ESX-1, is a major virulence determinant in pathogenic species such as Mycobacterium tuberculosis and the fish pathogen Mycobacterium marinum. ESX-1 secretes a variety of substrates, called Esx, PE, PPE, and Esp proteins, at least some of which are folded heterodimers. Investigation into the functions of these substrates is problematic, because of the intricate network of codependent secretion between several ESX-1 substrates. Here, we describe the ESX-1 substrate PPE68 as essential for secretion of the highly immunogenic substrates EsxA and EspE via the ESX-1 system in M. marinum. While secreted PPE68 is processed on the cell surface, the majority of cell-associated PPE68 of M. marinum and M. tuberculosis is present in a cytosolic complex with its PE partner and the EspG1 chaperone. Interfering with the binding of EspG1 to PPE68 blocked its export and the secretion of EsxA and EspE. In contrast, esxA was not required for the secretion of PPE68, revealing a hierarchy in codependent secretion. Remarkably, the final 10 residues of PPE68, a negatively charged domain, seem essential for EspE secretion, but not for the secretion of EsxA and of PPE68 itself. This indicates that distinctive domains of PPE68 are involved in secretion of the different ESX-1 substrates. Based on these findings, we propose a mechanistic model for the central role of PPE68 in ESX-1-mediated secretion and substrate codependence. IMPORTANCE Pathogenic mycobacteria, such Mycobacterium tuberculosis and Mycobacterium marinum, use a type VII secretion system (T7SS) subtype, called ESX-1, to mediate intracellular survival via phagosomal rupture and subsequent translocation of the mycobacterium to the host cytosol. Identifying the ESX-1 substrate that is responsible for this process is problematic because of the intricate network of codependent secretion between ESX-1 substrates. Here, we show the central role of the ESX-1 substrate PPE68 for the secretion of ESX-1 substrates in Mycobacterium marinum. Unravelling the mechanism of codependent secretion will aid the functional understanding of T7SSs and will allow the analysis of the individual roles of ESX-1 substrates in the virulence caused by the significant human pathogen Mycobacterium tuberculosis.


Assuntos
Mycobacterium marinum , Mycobacterium tuberculosis , Sistemas de Secreção Tipo VII , Animais , Humanos , Mycobacterium marinum/metabolismo , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Virulência , Fatores de Virulência/metabolismo , Sistemas de Secreção Tipo VII/metabolismo
2.
Front Microbiol ; 11: 534118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123097

RESUMO

Dectin-1 and ephrin type-A receptor 2 (EphA2) receptors recognize ß-glucan present in the fungal cell wall. Inhibition of Dectin-1 with the monoclonal 2a11 antibody was shown to reduce internalization of conidia of the human pathogen Aspergillus fumigatus into epithelial cells. In this study, we investigated the role of the EphA2 receptor present on A549 epithelial type II lung cells in the interaction with A. fumigatus conidia. We assessed whether EphA2 is involved in association and internalization of conidia by receptor inhibition by an antibody or by using the kinase inhibitor dasatinib. A 50% reduction of internalization of conidia was observed when this receptor was blocked with either the EphA2-specific monoclonal antibody or dasatinib, which was similar when Dectin-1 was inhibited with the 2a11 monoclonal antibody. Inhibition of both receptors reduced the internalization to 40%. EphA2 inhibition was also assessed in a hydrophobin deletion strain (ΔrodA) that exposes more ß-glucan and a dihydroxynaphthalene (DHN)-melanin deletion strain (ΔpksP) that exposes more glucosamine and glycoproteins. The ΔrodA strain behaved similar to the wild-type strain with or without EphA2 inhibition. In contrast, the ΔpksP mutant showed an increase in association to the A549 cells and a decrease in internalization. Internalization was not further decreased by EphA2 inhibition. Taken together, the presence of DHN-melanin in the spore cell wall results in an EphA2-dependent internalization of conidia of A. fumigatus into A549 cells.

3.
BMC Genomics ; 19(1): 534, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005605

RESUMO

BACKGROUND: Aspergillus fumigatus is the main causative agent of aspergillosis. Infections rarely occur in immunocompetent individuals, indicating efficient clearance of conidia by pulmonary defense mechanisms. Other aspergilli like Aspergillus niger also cause infections but to a much lesser extent. Our previous studies showed that A. fumigatus and A. niger have different behavior in the presence of type II alveolar A549 epithelial cells. A. fumigatus conidia are more efficiently internalized by these cells and germination is delayed when compared to A. niger. In addition, hyphae that have escaped the epithelial cells grow parallel to the epithelium, while A. niger grows away from this cell layer. RESULTS: Here it is shown that global gene expression of A. fumigatus and A. niger is markedly different upon contact with A549 cells. A total of 545 and 473 genes of A. fumigatus and A. niger, respectively, were differentially expressed when compared to growth in the absence of A549 cells. Notably, only 53 genes (approximately 10%) were shared in these gene sets. The different response was also illustrated by the fact that only 4 out of 75 GO terms were shared that were enriched in the differentially expressed gene sets. The orthologues of A. fumigatus genes involved in hypoxia regulation and heat shock were also up-regulated in A. niger, whereas thioredoxin reductase and allergen genes were found up-regulated in A. fumigatus but down-regulated in A. niger. Infection with A. fumigatus resulted in only 62 up and 47 down-regulated genes in A549. These numbers were 17 and 34 in the case of A. niger. GO terms related with immune response were down-regulated upon exposure to A. fumigatus but not in the case of A. niger. This indicates that A. fumigatus reprograms A549 to be less immunologically alert. CONCLUSIONS: Our dual transcriptomic analysis supports earlier observations of a marked difference in life style between A. fumigatus and A. niger when grown in the presence of type II epithelial cells. The results indicate important differences in gene expression, amongst others down regulation of immune response genes in lung epithelial cells by A. fumigatus but not by A niger.


Assuntos
Aspergillus fumigatus/patogenicidade , Aspergillus niger/patogenicidade , Células A549 , Regulação para Baixo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Análise de Sequência de RNA , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA