Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4546, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806494

RESUMO

Asthma has striking disparities across ancestral groups, but the molecular underpinning of these differences is poorly understood and minimally studied. A goal of the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) is to understand multi-omic signatures of asthma focusing on populations of African ancestry. RNASeq and DNA methylation data are generated from nasal epithelium including cases (current asthma, N = 253) and controls (never-asthma, N = 283) from 7 different geographic sites to identify differentially expressed genes (DEGs) and gene networks. We identify 389 DEGs; the top DEG, FN1, was downregulated in cases (q = 3.26 × 10-9) and encodes fibronectin which plays a role in wound healing. The top three gene expression modules implicate networks related to immune response (CEACAM5; p = 9.62 × 10-16 and CPA3; p = 2.39 × 10-14) and wound healing (FN1; p = 7.63 × 10-9). Multi-omic analysis identifies FKBP5, a co-chaperone of glucocorticoid receptor signaling known to be involved in drug response in asthma, where the association between nasal epithelium gene expression is likely regulated by methylation and is associated with increased use of inhaled corticosteroids. This work reveals molecular dysregulation on three axes - increased Th2 inflammation, decreased capacity for wound healing, and impaired drug response - that may play a critical role in asthma within the African Diaspora.


Assuntos
Asma , População Negra , Metilação de DNA , Mucosa Nasal , Proteínas de Ligação a Tacrolimo , Humanos , Asma/genética , Asma/metabolismo , Mucosa Nasal/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Feminino , Masculino , População Negra/genética , Adulto , Redes Reguladoras de Genes , Fibronectinas/metabolismo , Fibronectinas/genética , Estudos de Casos e Controles , Regulação da Expressão Gênica , Pessoa de Meia-Idade , Multiômica
2.
iScience ; 26(11): 108348, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026197

RESUMO

Zoonotic arenavirus infections can result in viral hemorrhagic disease, characterized by platelet loss, petechia, and multi-organ injury. The mechanisms governing these outcomes are likely impacted by virus strain and infection dose, as well as an individual's genetic background and immune constitution. To better understand the processes leading to severe pathogenesis, we compared two strains of inbred mice, C57BL/6J (B6) and FVB/NJ (FVB), that have diametrically opposed outcomes during disseminated lymphocytic choriomeningitis virus (LCMV) infection. Infection caused minimal pathogenesis in B6 mice, whereas FVB mice developed acute hepatitis and perished due, in part, to aberrant NK cell and T cell responses. Susceptible mice showed an outgrowth of cytolytic CD4+ T cells and loss of Treg cells. B6 congenic mice with the FVB allele at a 25Mb locus on chromosome 17 recapitulated FVB pathogenesis upon infection. A locus containing a limited number of variants in immune-related genes greatly impacts survival during infection.

3.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L765-L775, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847709

RESUMO

Airway mucociliary clearance (MCC) is required for host defense and is often diminished in chronic lung diseases. Effective clearance depends upon coordinated actions of the airway epithelium and a mobile mucus layer. Dysregulation of the primary secreted airway mucin proteins, MUC5B and MUC5AC, is associated with a reduction in the rate of MCC; however, how other secreted proteins impact the integrity of the mucus layer and MCC remains unclear. We previously identified the gene Bpifb1/Lplunc1 as a regulator of airway MUC5B protein levels using genetic approaches. Here, we show that BPIFB1 is required for effective MCC in vivo using Bpifb1 knockout (KO) mice. Reduced MCC in Bpifb1 KO mice occurred in the absence of defects in epithelial ion transport or reduced ciliary beat frequency. Loss of BPIFB1 in vivo and in vitro altered biophysical and biochemical properties of mucus that have been previously linked to impaired MCC. Finally, we detected colocalization of BPIFB1 and MUC5B in secretory granules in mice and the protein mesh of secreted mucus in human airway epithelia cultures. Collectively, our findings demonstrate that BPIFB1 is an important component of the mucociliary apparatus in mice and a key component of the mucus protein network.NEW & NOTEWORTHY BPIFB1, also known as LPLUNC1, was found to regulate mucociliary clearance (MCC), a key aspect of host defense in the airway. Loss of this protein was also associated with altered biophysical and biochemical properties of mucus that have been previously linked to impaired MCC.


Assuntos
Pneumopatias , Depuração Mucociliar , Camundongos , Humanos , Animais , Depuração Mucociliar/fisiologia , Sistema Respiratório/metabolismo , Muco/metabolismo , Pneumopatias/metabolismo , Camundongos Knockout
4.
Respir Res ; 24(1): 153, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296458

RESUMO

Among asthmatics, there is significant heterogeneity in the clinical presentation and underlying pathophysiological mechanisms, leading to the recognition of multiple disease endotypes (e.g., T2-high vs. T2-low). This heterogeneity extends to severe asthmatics, who may struggle to control symptoms even with high-dose corticosteroid treatment and other therapies. However, there are limited mouse models available to model the spectrum of severe asthma endotypes. We sought to identify a new mouse model of severe asthma by first examining responses to chronic allergen exposure among strains from the Collaborative Cross (CC) mouse genetics reference population, which contains greater genetic diversity than other inbred strain panels previously used for models of asthma. Mice from five CC strains and the often-used classical inbred strain BALB/cJ were chronically exposed to house dust mite (HDM) allergen for five weeks followed by measurements of airway inflammation. CC strain CC011/UncJ (CC011) exhibited extreme responses to HDM including high levels of airway eosinophilia, elevated lung resistance, and extensive airway wall remodeling, and even fatalities among ~ 50% of mice prior to study completion. Compared to BALB/cJ mice, CC011 mice had stronger Th2-mediated airway responses demonstrated by significantly elevated total and HDM-specific IgE and increased Th2 cytokines during tests of antigen recall, but not enhanced ILC2 activation. Airway eosinophilia in CC011 mice was completely dependent upon CD4+ T-cells. Notably, we also found that airway eosinophilia in CC011 mice was resistant to dexamethasone steroid treatment. Thus, the CC011 strain provides a new mouse model of T2-high, severe asthma driven by natural genetic variation likely acting through CD4+ T-cells. Future studies aimed at determining the genetic basis of this phenotype will provide new insights into mechanisms underlying severe asthma.


Assuntos
Asma , Imunidade Inata , Camundongos , Animais , Citocinas , Linfócitos , Asma/tratamento farmacológico , Pulmão , Alérgenos , Pyroglyphidae , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Células Th2
5.
PLoS Genet ; 19(6): e1010445, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352370

RESUMO

Hyper-secretion and/or hyper-concentration of mucus is a defining feature of multiple obstructive lung diseases, including chronic obstructive pulmonary disease (COPD). Mucus itself is composed of a mixture of water, ions, salt and proteins, of which the gel-forming mucins, MUC5AC and MUC5B, are the most abundant. Recent studies have linked the concentrations of these proteins in sputum to COPD phenotypes, including chronic bronchitis (CB) and acute exacerbations (AE). We sought to determine whether common genetic variants influence sputum mucin concentrations and whether these variants are also associated with COPD phenotypes, specifically CB and AE. We performed a GWAS to identify quantitative trait loci for sputum mucin protein concentration (pQTL) in the Sub-Populations and InteRmediate Outcome Measures in COPD Study (SPIROMICS, n = 708 for total mucin, n = 215 for MUC5AC, MUC5B). Subsequently, we tested for associations of mucin pQTL with CB and AE using regression modeling (n = 822-1300). Replication analysis was conducted using data from COPDGene (n = 5740) and by examining results from the UK Biobank. We identified one genome-wide significant pQTL for MUC5AC (rs75401036) and two for MUC5B (rs140324259, rs10001928). The strongest association for MUC5B, with rs140324259 on chromosome 11, explained 14% of variation in sputum MUC5B. Despite being associated with lower MUC5B, the C allele of rs140324259 conferred increased risk of CB (odds ratio (OR) = 1.42; 95% confidence interval (CI): 1.10-1.80) as well as AE ascertained over three years of follow up (OR = 1.41; 95% CI: 1.02-1.94). Associations between rs140324259 and CB or AE did not replicate in COPDGene. However, in the UK Biobank, rs140324259 was associated with phenotypes that define CB, namely chronic mucus production and cough, again with the C allele conferring increased risk. We conclude that sputum MUC5AC and MUC5B concentrations are associated with common genetic variants, and the top locus for MUC5B may influence COPD phenotypes, in particular CB.


Assuntos
Mucinas , Doença Pulmonar Obstrutiva Crônica , Humanos , Mucinas/genética , Mucinas/metabolismo , Escarro/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Muco/metabolismo , Fenótipo
6.
J Lipid Res ; 63(10): 100267, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36028048

RESUMO

Obesity exacerbates inflammation upon lung injury; however, the mechanisms by which obesity primes pulmonary dysregulation prior to external injury are not well studied. Herein, we tested the hypothesis that obesity dysregulates pulmonary PUFA metabolism that is central to inflammation initiation and resolution. We first show that a high-fat diet (HFD) administered to C57BL/6J mice increased the relative abundance of pulmonary PUFA-containing triglycerides and the concentration of PUFA-derived oxylipins (particularly prostaglandins and hydroxyeicosatetraenoic acids), independent of an increase in total pulmonary PUFAs, prior to onset of pulmonary inflammation. Experiments with a genetic model of obesity (ob/ob) generally recapitulated the effects of the HFD on the pulmonary oxylipin signature. Subsequent pulmonary next-generation RNA sequencing identified complex and unique transcriptional regulation with the HFD. We found the HFD increased pathways related to glycerophospholipid metabolism and immunity, including a unique elevation in B cell differentiation and signaling. Furthermore, we conducted computational integration of lipidomic with transcriptomic data. These analyses identified novel HFD-driven networks between glycerophospholipid metabolism and B cell receptor signaling with specific PUFA-derived pulmonary oxylipins. Finally, we confirmed the hypothesis by demonstrating that the concentration of pulmonary oxylipins, in addition to inflammatory markers, were generally increased in mice consuming a HFD upon ozone-induced acute lung injury. Collectively, these data show that a HFD dysregulates pulmonary PUFA metabolism prior to external lung injury, which may be a mechanism by which obesity primes the lungs to respond poorly to infectious and/or inflammatory challenges.


Assuntos
Ácidos Graxos Ômega-3 , Lesão Pulmonar , Ozônio , Animais , Camundongos , Oxilipinas/metabolismo , Lipidômica , Ácidos Graxos Ômega-3/metabolismo , Transcriptoma , Camundongos Endogâmicos C57BL , Ácidos Graxos Insaturados/metabolismo , Obesidade/genética , Inflamação/genética , Inflamação/metabolismo , Triglicerídeos , Pulmão/metabolismo , Prostaglandinas , Ácidos Hidroxieicosatetraenoicos , Glicerofosfolipídeos , Receptores de Antígenos de Linfócitos B , Dieta Hiperlipídica/efeitos adversos
7.
Am J Respir Cell Mol Biol ; 67(5): 528-538, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35816602

RESUMO

Ozone (O3)-induced respiratory toxicity varies considerably within the human population and across inbred mouse strains, indicative of gene-environment interactions (GxE). Though previous studies have identified several quantitative trait loci (QTL) and candidate genes underlying responses to O3 exposure, precise mechanisms of susceptibility remain incompletely described. We sought to update our understanding of the genetic architecture of O3 responsiveness using the Collaborative Cross (CC) recombinant inbred mouse panel. We evaluated hallmark O3-induced inflammation and injury phenotypes in 56 CC strains after exposure to filtered air or 2 ppm O3, and performed focused genetic analysis of variation in lung injury, as reflected by protein in lung lavage fluid. Strain-dependent responses to O3 were clear, and QTL mapping revealed two novel loci on Chr (Chromosomes) 10 (peak, 26.2 Mb; 80% confidence interval [CI], 24.6-43.6 Mb) and 15 (peak, 47.1 Mb; 80% CI, 40.2-54.9 Mb), the latter surpassing the 95% significance threshold. At the Chr 15 locus, C57BL/6J and CAST/EiJ founder haplotypes were associated with higher lung injury responses compared with all other CC founder haplotypes. With further statistical analysis and a weight of evidence approach, we delimited the Chr 15 QTL to an ∼2 Mb region containing 21 genes (10 protein coding) and nominated three candidate genes, namely Oxr1, Rspo2, and Angpt1. Gene and protein expression data further supported Oxr1 and Angpt1 as priority candidate genes. In summary, we have shown that O3-induced lung injury is modulated by genetic variation, identified two high priority candidate genes, and demonstrated the value of the CC for detecting GxE.


Assuntos
Lesão Pulmonar , Ozônio , Animais , Camundongos , Mapeamento Cromossômico , Cromossomos Humanos Par 15 , Camundongos de Cruzamento Colaborativo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Ozônio/toxicidade
8.
Front Physiol ; 13: 842592, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356083

RESUMO

As the nasal cavity is the portal of entry for inspired air in mammals, this region is exposed to the highest concentration of inhaled particulate matter and pathogens, which must be removed to keep the lower airways sterile. Thus, one might expect vigorous removal of these substances via mucociliary clearance (MCC) in this region. We have investigated the rate of MCC in the murine nasal cavity compared to the more distal airways (trachea). The rate of MCC in the nasal cavity (posterior nasopharynx, PNP) was ∼3-4× greater than on the tracheal wall. This appeared to be due to a more abundant population of ciliated cells in the nasal cavity (∼80%) compared to the more sparsely ciliated trachea (∼40%). Interestingly, the tracheal ventral wall exhibited a significantly lower rate of MCC than the tracheal posterior membrane. The trachealis muscle underlying the ciliated epithelium on the posterior membrane appeared to control the surface architecture and likely in part the rate of MCC in this tracheal region. In one of our mouse models (Bpifb1 KO) exhibiting a 3-fold increase in MUC5B protein in lavage fluid, MCC particle transport on the tracheal walls was severely compromised, yet normal MCC occurred on the tracheal posterior membrane. While a blanket of mucus covered the surface of both the PNP and trachea, this mucus appeared to be transported as a blanket by MCC only in the PNP. In contrast, particles appeared to be transported as discrete patches or streams of mucus in the trachea. In addition, particle transport in the PNP was fairly linear, in contrast transport of particles in the trachea often followed a more non-linear route. The thick, viscoelastic mucus blanket that covered the PNP, which exhibited ∼10-fold greater mass of mucus than did the blanket covering the surface of the trachea, could be transported over large areas completely devoid of cells (made by a breach in the epithelial layer). In contrast, particles could not be transported over even a small epithelial breach in the trachea. The thick mucus blanket in the PNP likely aids in particle transport over the non-ciliated olfactory cells in the nasal cavity and likely contributes to humidification and more efficient particle trapping in this upper airway region.

9.
Am J Physiol Lung Cell Mol Physiol ; 322(1): L33-L49, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755540

RESUMO

Acute ozone (O3) exposure is associated with multiple adverse cardiorespiratory outcomes, the severity of which varies across individuals in human populations and inbred mouse strains. However, molecular determinants of response, including susceptibility biomarkers that distinguish who will develop severe injury and inflammation, are not well characterized. We and others have demonstrated that airway macrophages (AMs) are an important resident immune cell type that are functionally and transcriptionally responsive to O3 inhalation. Here, we sought to explore influences of strain, exposure, and strain-by-O3 exposure interactions on AM gene expression and identify transcriptional correlates of O3-induced inflammation and injury across six mouse strains, including five Collaborative Cross (CC) strains. We exposed adult mice of both sexes to filtered air (FA) or 2 ppm O3 for 3 h and measured inflammatory and injury parameters 21 h later. Mice exposed to O3 developed airway neutrophilia and lung injury with strain-dependent severity. In AMs, we identified a common core O3 transcriptional response signature across all strains, as well as a set of genes exhibiting strain-by-O3 exposure interactions. In particular, a prominent gene expression contrast emerged between a low- (CC017/Unc) and high-responding (CC003/Unc) strain, as reflected by cellular inflammation and injury. Further inspection indicated that differences in their baseline gene expression and chromatin accessibility profiles likely contribute to their divergent post-O3 exposure transcriptional responses. Together, these results suggest that aspects of O3-induced respiratory responses are mediated through altered AM transcriptional signatures and further confirm the importance of gene-environment interactions in mediating differential responsiveness to environmental agents.


Assuntos
Pulmão/patologia , Macrófagos/metabolismo , Ozônio/efeitos adversos , Animais , Cromatina/metabolismo , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos
11.
Physiol Rep ; 9(18): e15054, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34558223

RESUMO

Inhalation exposure to ozone (O3 ) causes adverse respiratory health effects that result from airway inflammation, a complex response mediated in part by changes to airway cellular transcriptional programs. These programs may be regulated by microRNAs transferred between cells (e.g., epithelial cells and macrophages) via extracellular vesicles (EV miRNA). To explore this, we exposed female C57BL/6J mice to filtered air (FA), 1, or 2 ppm O3 by inhalation and collected bronchoalveolar lavage fluid (BALF) 21 h later for markers of airway inflammation, EVs, and EV miRNA. Both concentrations of O3  significantly increased markers of inflammation (neutrophils), injury (total protein), and the number of EV-sized particles in the BALF. Imagestream analysis indicated a substantial portion of particles was positive for canonical EV markers (CD81, CD51), and Siglec-F, a marker of alveolar macrophages. Using high-throughput small RNA sequencing, we identified several differentially expressed (DE) BALF EV miRNAs after 1 ppm (16 DE miRNAs) and 2 ppm (99 DE miRNAs) O3 versus FA exposure. O3 concentration-response patterns in EV miRNA expression were apparent, particularly for miR-2137, miR-126-3p, and miR-351-5p. Integrative analysis of EV miRNA expression and airway cellular mRNA expression identified EV miR-22-3p as a candidate regulator of transcriptomic responses to O3 in airway macrophages. In contrast, we did not identify candidate miRNA regulators of mRNA expression data from conducting airways (predominantly composed of epithelial cells). In summary, our data show that O3 exposure alters EV release and EV miRNA expression, suggesting that further investigation of EVs may provide insight into their effects on airway macrophage function and other mechanisms of O3 -induced respiratory inflammation.


Assuntos
Poluentes Atmosféricos/toxicidade , Vesículas Extracelulares/metabolismo , Pulmão/efeitos dos fármacos , MicroRNAs/metabolismo , Ozônio/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/citologia , Feminino , Pulmão/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
12.
Genetics ; 216(4): 957-983, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33082282

RESUMO

Multiparental populations (MPPs) are experimental populations in which the genome of every individual is a mosaic of known founder haplotypes. These populations are useful for detecting quantitative trait loci (QTL) because tests of association can leverage inferred founder haplotype descent. It is difficult, however, to determine how haplotypes at a locus group into distinct functional alleles, termed the allelic series. The allelic series is important because it provides information about the number of causal variants at a QTL and their combined effects. In this study, we introduce a fully Bayesian model selection framework for inferring the allelic series. This framework accounts for sources of uncertainty found in typical MPPs, including the number and composition of functional alleles. Our prior distribution for the allelic series is based on the Chinese restaurant process, a relative of the Dirichlet process, and we leverage its connection to the coalescent to introduce additional prior information about haplotype relatedness via a phylogenetic tree. We evaluate our approach via simulation and apply it to QTL from two MPPs: the Collaborative Cross (CC) and the Drosophila Synthetic Population Resource (DSPR). We find that, although posterior inference of the exact allelic series is often uncertain, we are able to distinguish biallelic QTL from more complex multiallelic cases. Additionally, our allele-based approach improves haplotype effect estimation when the true number of functional alleles is small. Our method, Tree-Based Inference of Multiallelism via Bayesian Regression (TIMBR), provides new insight into the genetic architecture of QTL in MPPs.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Haplótipos , Locos de Características Quantitativas , Animais , Teorema de Bayes , Drosophila , Efeito Fundador , Frequência do Gene , Padrões de Herança , Modelos Genéticos
13.
Mamm Genome ; 31(7-8): 205-214, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32860515

RESUMO

Airway neutrophilia is correlated with disease severity in a number of chronic and acute pulmonary diseases, and dysregulation of neutrophil chemotaxis can lead to host tissue damage. The gene Zfp30 was previously identified as a candidate regulator of neutrophil recruitment to the lungs and secretion of CXCL1, a potent neutrophil chemokine, in a genome-wide mapping study using the Collaborative Cross. ZFP30 is a putative transcriptional repressor with a KRAB domain capable of inducing heterochromatin formation. Using a CRISPR-mediated knockout mouse model, we investigated the role that Zfp30 plays in recruitment of neutrophils to the lung using models of allergic airway disease and acute lung injury. We found that the Zfp30 null allele did not affect CXCL1 secretion or neutrophil recruitment to the lungs in response to various innate immune stimuli. Intriguingly, despite the lack of neutrophil phenotype, we found there was a significant reduction in the proportion of live Zfp30 homozygous female mutant mice produced from heterozygous matings. This deviation from the expected Mendelian ratios implicates Zfp30 in fertility or embryonic development. Overall, our results indicate that Zfp30 is an essential gene but does not influence neutrophilic inflammation in this particular knockout model.


Assuntos
Proteínas de Ligação a DNA/deficiência , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Imunomodulação/genética , Fatores de Transcrição/deficiência , Alelos , Animais , Biomarcadores , Sistemas CRISPR-Cas , Células Cultivadas , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Edição de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Masculino , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Toxicol Sci ; 173(1): 114-130, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626304

RESUMO

Ambient ozone (O3) exposure has serious consequences on respiratory health, including airway inflammation and injury. Decades of research have yielded thorough descriptions of these outcomes; however, less is known about the molecular processes that drive them. The aim of this study was to further describe the cellular and molecular responses to O3 exposure in murine airways, with a particular focus on transcriptional responses in 2 critical pulmonary tissue compartments: conducting airways (CA) and airway macrophages (AM). After exposing adult, female C57BL/6J mice to filtered air, 1 or 2 ppm O3, we assessed hallmark responses including airway inflammation (cell counts and cytokine secretion) and injury (epithelial permeability), followed by gene expression profiling of CA and AM by RNA-seq. As expected, we observed concentration-dependent increases in airway inflammation and injury. Conducting airways and AM both exhibited changes in gene expression to both 1 and 2 ppm O3 that were largely compartment-specific. In CA, genes associated with epithelial barrier function, detoxification processes, and cellular proliferation were altered, while O3 affected genes involved in innate immune signaling, cytokine production, and extracellular matrix remodeling in AM. Further, CA and AM also exhibited notable differences in concentration-response expression patterns for large numbers of genes. Overall, our study has described transcriptional responses to acute O3 exposure, revealing both shared and unique gene expression patterns across multiple concentrations of O3 and in 2 important O3-responsive tissues. These profiles provide broad mechanistic insight into pulmonary O3 toxicity, and reveal a variety of targets for focused follow-up studies.


Assuntos
Poluentes Atmosféricos/toxicidade , Ozônio/toxicidade , Animais , Líquido da Lavagem Broncoalveolar , Feminino , Inflamação/fisiopatologia , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Toxicidade Aguda
15.
Inhal Toxicol ; 31(2): 61-72, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-31021248

RESUMO

Objective: Complete systems for laboratory-based inhalation toxicology studies are typically not commercially available; therefore, inhalation toxicologists utilize custom-made exposure systems. Here we report on the design, construction, testing, operation and maintenance of a newly developed in vivo rodent ozone inhalation exposure system. Materials and methods: Key design requirements for the system included large-capacity exposure chambers to facilitate studies with large sample sizes, automatic and precise control of chamber ozone concentrations, as well as automated data collection on airflow and environmental conditions. The exposure system contains two Hazelton H-1000 stainless steel and glass exposure chambers, each providing capacity for up to 180 mice or 96 rats. We developed an empirically tuned proportional-integral-derivative control loop that provides stable ozone concentrations throughout the exposure period (typically 3h), after a short ramp time (∼8 min), and across a tested concentration range of 0.2-2 ppm. Specific details on the combination of analog and digital input/output system for environmental data acquisition, control and safety systems are provided, and we outline the steps involved in maintenance and calibration of the system. Results: We show that the exposure system produces consistent ozone exposures both within and across experiments, as evidenced by low coefficients of variation in chamber ozone concentration and consistent biological responses (airway inflammation) in mice, respectively. Conclusion: Thus, we have created a large and robust ozone exposure system, facilitating future studies on the health effects of ozone in rodents.


Assuntos
Câmaras de Exposição Atmosférica , Sistemas Computacionais , Exposição por Inalação , Ozônio/administração & dosagem , Animais , Desenho de Equipamento , Feminino , Camundongos Endogâmicos C57BL , Software
16.
G3 (Bethesda) ; 9(5): 1707-1727, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30914424

RESUMO

The Collaborative Cross (CC) is a mouse genetic reference population whose range of applications includes quantitative trait loci (QTL) mapping. The design of a CC QTL mapping study involves multiple decisions, including which and how many strains to use, and how many replicates per strain to phenotype, all viewed within the context of hypothesized QTL architecture. Until now, these decisions have been informed largely by early power analyses that were based on simulated, hypothetical CC genomes. Now that more than 50 CC strains are available and more than 70 CC genomes have been observed, it is possible to characterize power based on realized CC genomes. We report power analyses from extensive simulations and examine several key considerations: 1) the number of strains and biological replicates, 2) the QTL effect size, 3) the presence of population structure, and 4) the distribution of functionally distinct alleles among the founder strains at the QTL. We also provide general power estimates to aide in the design of future experiments. All analyses were conducted with our R package, SPARCC (Simulated Power Analysis in the Realized Collaborative Cross), developed for performing either large scale power analyses or those tailored to particular CC experiments.


Assuntos
Mapeamento Cromossômico , Camundongos de Cruzamento Colaborativo/genética , Cruzamentos Genéticos , Locos de Características Quantitativas , Alelos , Animais , Cromossomos , Frequência do Gene , Genética Populacional , Genoma , Estudo de Associação Genômica Ampla , Haplótipos , Camundongos , Modelos Genéticos , Fenótipo , Reprodutibilidade dos Testes
17.
Eur Respir J ; 51(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29650561

RESUMO

Differential gene expression in the airway epithelium of patients with asthma versus controls has been reported in several studies. However, there is no consensus on which genes are reproducibly affected in asthma. We sought to identify a consensus list of differentially expressed genes (DEGs) using a meta-analysis approach.We identified eight studies with data that met defined inclusion criteria. These studies comprised 355 cases and 193 controls and involved sampling either bronchial or nasal epithelium. We conducted study-level analyses, followed by a meta-analysis. Likewise, we applied a meta-analysis framework to the results of study-level pathway enrichment.We identified 1273 DEGs, 431 of which had not been identified in previous studies. 450 DEGs exhibited large effect sizes and were robust to study population differences in age, sex, race/ethnicity, medication use, smoking status and exacerbations. The magnitude of differential expression of these 450 genes was highly similar in bronchial and nasal airway epithelia. Meta-analysis of pathway enrichment revealed a number of consistently dysregulated biological pathways, including putative transcriptional and post-transcriptional regulators.In total, we identified a set of genes that is consistently dysregulated in asthma, that links to known and novel biological pathways, and that will inform asthma subtype identification.


Assuntos
Asma/genética , Asma/metabolismo , Brônquios/metabolismo , Expressão Gênica , Mucosa Nasal/metabolismo , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos
18.
Sci Rep ; 7(1): 11258, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900269

RESUMO

The complex role of neutrophils in modulating the inflammatory response is increasingly appreciated. Our studies profiled the expression of mRNAs and microRNAs (miRs) in lung neutrophils in mice during S. pneumoniae pneumonia and performed in depth in silico analyses. Lung neutrophils were isolated 24 hours after intratracheal instillation of PBS or S. pneumoniae, and differentially expressed (DE) mRNAs and miRs were identified. Lung neutrophils from mice with S. pneumoniae pneumonia contained 4127 DE mRNAs, 36% of which were upregulated at least 2-fold. During pneumonia, lung neutrophils increase expression of pattern recognition receptors, receptors for inflammatory mediators, transcription factors including NF-κB and AP-1, Nrf2 targets, cytokines, chemokines and other inflammatory mediators. Interestingly, neutrophils responded to Type I interferons, whereas they both produced and responded to Type II interferon. Expression of regulators of the inflammatory and immune response was verified at the mRNA and protein level. Of approximately 1100 miRs queried, 31 increased and 67 decreased more than 2-fold in neutrophils from S. pneumoniae pneumonia. Network analyses of potential DE miR-target DE mRNA interactions revealed candidate key regulatory miRs. Thus, S. pneumoniae modulates mRNA and miR expression by lung neutrophils, increasing their ability to respond and facilitating host defense.


Assuntos
Perfilação da Expressão Gênica , Pulmão/patologia , MicroRNAs/análise , Neutrófilos/imunologia , Pneumonia Pneumocócica/patologia , RNA Mensageiro/análise , Animais , Biologia Computacional , Modelos Animais de Doenças , Redes Reguladoras de Genes , Camundongos
19.
Genetics ; 207(2): 801-812, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28851744

RESUMO

Mucus hyper-secretion is a hallmark feature of asthma and other muco-obstructive airway diseases. The mucin proteins MUC5AC and MUC5B are the major glycoprotein components of mucus and have critical roles in airway defense. Despite the biomedical importance of these two proteins, the loci that regulate them in the context of natural genetic variation have not been studied. To identify genes that underlie variation in airway mucin levels, we performed genetic analyses in founder strains and incipient lines of the Collaborative Cross (CC) in a house dust mite mouse model of asthma. CC founder strains exhibited significant differences in MUC5AC and MUC5B, providing evidence of heritability. Analysis of gene and protein expression of Muc5ac and Muc5b in incipient CC lines (n = 154) suggested that post-transcriptional events were important regulators of mucin protein content in the airways. Quantitative trait locus (QTL) mapping identified distinct, trans protein QTL for MUC5AC (chromosome 13) and MUC5B (chromosome 2). These two QTL explained 18 and 20% of phenotypic variance, respectively. Examination of the MUC5B QTL allele effects and subsequent phylogenetic analysis allowed us to narrow the MUC5B QTL and identify Bpifb1 as a candidate gene. Bpifb1 mRNA and protein expression were upregulated in parallel to MUC5B after allergen challenge, and Bpifb1 knockout mice exhibited higher MUC5B expression. Thus, BPIFB1 is a novel regulator of MUC5B.


Assuntos
Proteínas de Transporte/metabolismo , Mucina-5AC/metabolismo , Mucina-5B/metabolismo , Locos de Características Quantitativas , Mucosa Respiratória/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucina-5AC/genética , Mucina-5B/genética
20.
G3 (Bethesda) ; 6(9): 2857-65, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27449512

RESUMO

Allergic asthma is common airway disease that is characterized in part by enhanced airway constriction in response to nonspecific stimuli. Genome-wide association studies have identified multiple loci associated with asthma risk in humans, but these studies have not accounted for gene-environment interactions, which are thought to be important factors in asthma. To identify quantitative trait loci (QTL) that regulate responses to a common human allergen, we applied a house dust mite mouse (HDM) model of allergic airway disease (AAD) to 146 incipient lines of the Collaborative Cross (CC) and the CC founder strains. We employed a longitudinal study design in which mice were phenotyped for response to the bronchoconstrictor methacholine both before and after HDM sensitization and challenge using whole body plethysmography (WBP). There was significant variation in methacholine responsiveness due to both strain and HDM treatment, as reflected by changes in the WBP parameter enhanced pause. We also found that distinct QTL regulate baseline [chromosome (Chr) 18] and post-HDM (Chr 19) methacholine responsiveness and that post-HDM airway responsiveness was correlated with other features of AAD. Finally, using invasive measurements of airway mechanics, we tested whether the Chr 19 QTL affects lung resistance per se using C57BL/6J mice and a consomic strain but found that QTL haplotype did not affect lung resistance. We conclude that aspects of baseline and allergen-induced methacholine responsiveness are associated with genetic variation, and that robust detection of airway resistance QTL in genetically diverse mice will be facilitated by direct measurement of airway mechanics.


Assuntos
Asma/tratamento farmacológico , Hipersensibilidade/tratamento farmacológico , Pyroglyphidae/patogenicidade , Locos de Características Quantitativas/genética , Alérgenos/administração & dosagem , Alérgenos/imunologia , Animais , Asma/genética , Asma/imunologia , Modelos Animais de Doenças , Interação Gene-Ambiente , Humanos , Hipersensibilidade/genética , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Imunização , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/patologia , Cloreto de Metacolina/administração & dosagem , Camundongos , Pletismografia , Pyroglyphidae/genética , Pyroglyphidae/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA