Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13964, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886461

RESUMO

Measuring viscosity in volumes smaller than a microliter is a challenging endeavor. A new type of microscopic viscometers is presented to assess the viscosity of Newtonian liquids. Micron-sized flexible polymer cantilevers are created by two-photon polymerization direct laser writing. Because of the low stiffness and high elasticity of the polymer material the microcantilevers exhibit pronounced Brownian motion when submerged in a liquid medium. By imaging the cantilever's spherically shaped end, these fluctuations can be tracked with high accuracy. The hydrodynamic resistance of the microviscometer is determined by fitting the power spectral density of the measured fluctuations with a theoretical frequency dependence. Validation measurements in water-glycerol mixtures with known viscosities reveal excellent linearity of the hydrodynamic resistance to viscosity, allowing for a simple linear calibration. The stand-alone viscometer structures have a characteristic size of a few tens of microns and only require a very basic external instrumentation in the form of microscopic imaging at moderate framerates (~ 100 fps). Thus, our results point to a practical and simple to use ultra-low volume viscometer that can be integrated into lab-on-a-chip devices.

2.
Adv Mater ; : e2401115, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814436

RESUMO

Precisely controlled manipulation of nonadherent single cells is often a pre-requisite for their detailed investigation. Optical trapping provides a versatile means for positioning cells with submicrometer precision or measuring forces with femto-Newton resolution. A variant of the technique, called indirect optical trapping, enables single-cell manipulation with no photodamage and superior spatial control and stability by relying on optically trapped microtools biochemically bound to the cell. High-resolution 3D lithography enables to prepare such cell manipulators with any predefined shape, greatly extending the number of achievable manipulation tasks. Here, it is presented for the first time a novel family of cell manipulators that are deformable by optical tweezers and rely on their elasticity to hold cells. This provides a more straightforward approach to indirect optical trapping by avoiding biochemical functionalization for cell attachment, and consequently by enabling the manipulated cells to be released at any time. Using the photoresist Ormocomp, the deformations achievable with optical forces in the tens of pN range and present three modes of single-cell manipulation as examples to showcase the possible applications such soft microrobotic tools can offer are characterized. The applications describe here include cell collection, 3D cell imaging, and spatially and temporally controlled cell-cell interaction.

3.
Nanomaterials (Basel) ; 13(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513080

RESUMO

We successfully created a composite photonic structure out of porous silicon (PSi) microcavities doped by the photochromic protein, photoactive yellow protein (PYP). Massive incorporation of the protein molecules into the pores was substantiated by a 30 nm shift of the resonance dip upon functionalization, and light-induced reflectance changes of the device due to the protein photocycle were recorded. Model calculations for the photonic properties of the device were consistent with earlier results on the nonlinear optical properties of the protein, whose degree of incorporation into the PSi structure was also estimated. The successful proof-of-concept results are discussed in light of possible practical applications in the future.

4.
Nanomaterials (Basel) ; 11(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34835725

RESUMO

Photopolymer nanowires prepared by two-photon polymerization direct laser writing (TPP-DLW) are the building blocks of many microstructure systems. These nanowires possess viscoelastic characteristics that define their deformations under applied forces when operated in a dynamic regime. A simple mechanical model was previously used to describe the bending recovery motion of deflected nanowire cantilevers in Newtonian liquids. The inverse problem is targeted in this work; the experimental observations are used to determine the nanowire physical characteristics. Most importantly, based on the linear three-parameter solid model, we derive explicit formulas to calculate the viscoelastic material parameters. It is shown that the effective elastic modulus of the studied nanowires is two orders of magnitude lower than measured for the bulk material. Additionally, we report on a notable effect of the surrounding aqueous glucose solution on the elasticity and the intrinsic viscosity of the studied nanowires made of Ormocomp.

5.
ACS Appl Mater Interfaces ; 13(33): 39018-39029, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34397215

RESUMO

Targeting nanoparticles as drug delivery platforms is crucial to facilitate their cellular entry. Docking of nanoparticles by targeting ligands on cell membranes is the first step for the initiation of cellular uptake. As a model system, we studied brain microvascular endothelial cells, which form the anatomical basis of the blood-brain barrier, and the tripeptide glutathione, one of the most effective targeting ligands of nanoparticles to cross the blood-brain barrier. To investigate this initial docking step between glutathione and the membrane of living brain endothelial cells, we applied our recently developed innovative optical method. We present a microtool, with a task-specific geometry used as a probe, actuated by multifocus optical tweezers to characterize the adhesion probability and strength of glutathione-coated surfaces to the cell membrane of endothelial cells. The binding probability of the glutathione-coated surface and the adhesion force between the microtool and cell membrane was measured in a novel arrangement: cells were cultured on a vertical polymer wall and the mechanical forces were generated laterally and at the same time, perpendicularly to the plasma membrane. The adhesion force values were also determined with more conventional atomic force microscopy (AFM) measurements using functionalized colloidal probes. The optical trapping-based method was found to be suitable to measure very low adhesion forces (≤ 20 pN) without a high level of noise, which is characteristic for AFM measurements in this range. The holographic optical tweezers-directed functionalized microtools may help characterize the adhesion step of nanoparticles initiating transcytosis and select ligands to target nanoparticles.


Assuntos
Membrana Celular/metabolismo , Células Endoteliais/metabolismo , Glutationa/metabolismo , Nanopartículas/metabolismo , Pinças Ópticas , Fenômenos Biofísicos , Barreira Hematoencefálica/metabolismo , Encéfalo , Adesão Celular , Membrana Celular/ultraestrutura , Células Endoteliais/citologia , Galactosamina/química , Humanos , Ligantes , Microscopia de Força Atômica , Nanopartículas/química , Polietilenoglicóis/química , Polímeros/metabolismo , Propriedades de Superfície , Transcitose
6.
Int J Biol Macromol ; 175: 19-29, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33508363

RESUMO

The interactions of graphene oxide (GO), a 2-dimensional nanomaterial with hydrophilic edges, hydrophobic basal plane and large flat surfaces, with biological macromolecules, are of key importance for the development of novel nanomaterials for biomedical applications. To gain more insight into the interaction of GO flakes with human serum albumin (HSA), we examined GO binding to HSA in its isolated state and in blood plasma. Calorimetric data reveal that GO strongly stabilizes free isolated HSA against a thermal challenge at low ionic strength, indicating strong binding interactions, confirmed by the drop in ζ-potential of the HSA/GO assemblies compared to bare GO flakes. However, calorimetry also revealed that the HSA-GO molecular interaction is hampered in blood plasma, the ionic strength being particularly important for the interactions. Molecular modelling calculations are in full concert with these experimental findings, indicating a considerably higher binding affinity for HSA to GO in its partially unfolded state, characteristic to low-ionic-strength environment, than for the native protein conformation, observed under physiological conditions. Therefore, for the first time we demonstrate an impeded interaction between HSA and GO nanoflakes in blood plasma, and suggest that the protein is protected from the plausible toxic effects of GO under native conditions.


Assuntos
Grafite/metabolismo , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Sítios de Ligação , Calorimetria , Grafite/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Acoplamento Molecular , Plasma/química , Plasma/metabolismo , Ligação Proteica , Conformação Proteica , Albumina Sérica/química , Albumina Sérica/metabolismo , Espectrometria de Fluorescência/métodos , Termodinâmica
7.
Pharmaceutics ; 14(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35056983

RESUMO

Nanosized drug delivery systems targeting transporters of the blood-brain barrier (BBB) are promising carriers to enhance the penetration of therapeutics into the brain. The expression of solute carriers (SLC) is high and shows a specific pattern at the BBB. Here we show that targeting ligands ascorbic acid, leucine and glutathione on nanoparticles elevated the uptake of albumin cargo in cultured primary rat brain endothelial cells. Moreover, we demonstrated the ability of the triple-targeted nanovesicles to deliver their cargo into midbrain organoids after crossing the BBB model. The cellular uptake was temperature- and energy-dependent based on metabolic inhibition. The process was decreased by filipin and cytochalasin D, indicating that the cellular uptake of nanoparticles was partially mediated by endocytosis. The uptake of the cargo encapsulated in triple-targeted nanoparticles increased after modification of the negative zeta potential of endothelial cells by treatment with a cationic lipid or after cleaving the glycocalyx with an enzyme. We revealed that targeted nanoparticles elevated plasma membrane fluidity, indicating the fusion of nanovesicles with endothelial cell membranes. Our data indicate that labeling nanoparticles with three different ligands of multiple transporters of brain endothelial cells can promote the transfer and delivery of molecules across the BBB.

8.
Micromachines (Basel) ; 11(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32972024

RESUMO

A cell elasticity measurement method is introduced that uses polymer microtools actuated by holographic optical tweezers. The microtools were prepared with two-photon polymerization. Their shape enables the approach of the cells in any lateral direction. In the presented case, endothelial cells grown on vertical polymer walls were probed by the tools in a lateral direction. The use of specially shaped microtools prevents the target cells from photodamage that may arise during optical trapping. The position of the tools was recorded simply with video microscopy and analyzed with image processing methods. We critically compare the resulting Young's modulus values to those in the literature obtained by other methods. The application of optical tweezers extends the force range available for cell indentations measurements down to the fN regime. Our approach demonstrates a feasible alternative to the usual vertical indentation experiments.

9.
Biomed Opt Express ; 11(2): 945-962, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32133231

RESUMO

Fluorescent observation of cells generally suffers from the limited axial resolution due to the elongated point spread function of the microscope optics. Consequently, three-dimensional imaging results in axial resolution that is several times worse than the transversal. The optical solutions to this problem usually require complicated optics and extreme spatial stability. A straightforward way to eliminate anisotropic resolution is to fuse images recorded from multiple viewing directions achieved mostly by the mechanical rotation of the entire sample. In the presented approach, multiview imaging of single cells is implemented by rotating them around an axis perpendicular to the optical axis by means of holographic optical tweezers. For this, the cells are indirectly trapped and manipulated with special microtools made with two-photon polymerization. The cell is firmly attached to the microtool and is precisely manipulated with 6 degrees of freedom. The total control over the cells' position allows for its multiview fluorescence imaging from arbitrarily selected directions. The image stacks obtained this way are combined into one 3D image array with a multiview image processing pipeline resulting in isotropic optical resolution that approaches the lateral diffraction limit. The presented tool and manipulation scheme can be readily applied in various microscope platforms.

10.
ACS Appl Bio Mater ; 1(5): 1667-1676, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34996216

RESUMO

Cancer cells undergo dramatic morphology changes when migrating in confined spaces narrower than their diameter during metastasis, and thus it is necessary to understand the deformation mechanism and associated molecular events in order to study tumor progression. To this end, we propose a new biochip with three-dimensional (3D) polymer nanostructures in a closed glass microfluidic chip. "Ship-in-a-bottle" femtosecond laser processing is an exclusive technique to flexibly create 3D small details in biochips. The wavefront correction by the spatial light modulator significantly improves the fabrication resolution of this technique. The device could then accommodate defect-free 3D biomimetic nanoconfigurations for the evaluation of prostate cancer cell migration in confined spaces. Specifically, polymeric channels with widths of ∼900 nm, which is more than one order of magnitude smaller than the cell size, are integrated by femtosecond laser inside glass channels. The cells are responsive to an in-channel gradient of epidermal growth factor and can migrate a distance greater than 20 µm. After migration, the cells suffer partial cytokinesis, followed by fusion of the divided parts back into single cell bodies.

11.
Micromachines (Basel) ; 8(7)2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30400410

RESUMO

In the era of lab-on-chip (LOC) devices, two-photon polymerization (TPP) is gaining more and more interest due to its capability of producing micrometer-sized 3D structures. With TPP, one may integrate functional structures into microfluidic systems by polymerizing them directly inside microchannels. When the feature of sub-micrometer size is a requirement, it is necessary to use high numerical aperture (NA) oil-immersion objectives that are optimized to work close to the glass substrate-photoresist interface. Further away from the substrate, that is, a few tens of micrometers into the photoresist, the focused beam undergoes focal spot elongation and focal position shift. These effects may eventually reduce the quality of the polymerized structures; therefore, it is desirable to eliminate them. We introduce a method that can highly improve the quality of structures polymerized tens of micrometers away from the substrate-photoresist interface by an oil-immersion, high NA objective. A spatial light-modulator is used to pre-compensate the phase-front distortion introduced by the interfacial refractive index jump on the strongly converging beam.

12.
Sci Rep ; 6: 30420, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27453091

RESUMO

Label-free microscopy techniques have numerous advantages such as low phototoxicity, simple setup and no need for fluorophores or other contrast materials. Despite their advantages, most label-free techniques cannot visualize specific cellular compartments or the location of proteins and the image formation limits quantitative evaluation. Differential interference contrast (DIC) is a qualitative microscopy technique that shows the optical path length differences within a specimen. We propose a variational framework for DIC image reconstruction. The proposed method largely outperforms state-of-the-art methods on synthetic, artificial and real tests and turns DIC microscopy into an automated high-content imaging tool. Image sets and the source code of the examined algorithms are made publicly available.

13.
Biomed Opt Express ; 7(1): 45-56, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26819816

RESUMO

We introduce a method that combines two-photon polymerization (TPP) and surface functionalization to enable the indirect optical manipulation of live cells. TPP-made 3D microstructures were coated specifically with a multilayer of the protein streptavidin and non-specifically with IgG antibody using polyethylene glycol diamine as a linker molecule. Protein density on their surfaces was quantified for various coating methods. The streptavidin-coated structures were shown to attach to biotinated cells reproducibly. We performed basic indirect optical micromanipulation tasks with attached structure-cell couples using complex structures and a multi-focus optical trap. The use of such extended manipulators for indirect optical trapping ensures to keep a safe distance between the trapping beams and the sensitive cell and enables their 6 degrees of freedom actuation.

14.
Langmuir ; 31(36): 10087-93, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26292094

RESUMO

3D microstructures partially covered by silver nanoparticles have been developed and tested for surface-enhanced Raman spectroscopy (SERS) in combination with optical tweezers. The microstructures made by two-photon polymerization of SU-8 photoresist were manipulated in a dual beam optical trap. The active area of the structures was covered by a SERS-active silver layer using chemically assisted photoreduction from silver nitrate solutions. Silver layers of different grain size distributions were created by changing the photoreduction parameters and characterized by scanning electron microscopy. The structures were tested by measuring the SERS spectra of emodin and hypericin.


Assuntos
Fotoquímica , Prata/química , Análise Espectral Raman/métodos , Microscopia Eletrônica de Varredura , Sondas Moleculares , Oxirredução , Propriedades de Superfície
15.
Opt Express ; 22(20): 24217-23, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25321996

RESUMO

Two-photon polymerization enables the fabrication of micron sized structures with submicron resolution. Spatial light modulators (SLM) have already been used to create multiple polymerizing foci in the photoresist by holographic beam shaping, thus enabling the parallel fabrication of multiple microstructures. Here we demonstrate the parallel two-photon polymerization of single 3D microstructures by multiple holographically translated foci. Multiple foci were created by phase holograms, which were calculated real-time on an NVIDIA CUDA GPU, and displayed on an electronically addressed SLM. A 3D demonstrational structure was designed that is built up from a nested set of dodecahedron frames of decreasing size. Each individual microstructure was fabricated with the parallel and coordinated motion of 5 holographic foci. The reproducibility and the high uniformity of features of the microstructures were verified by scanning electron microscopy.

16.
Opt Express ; 21(1): 581-93, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23388951

RESUMO

Optical trapping and manipulation typically relies on shaping focused light to control the optical force, usually on spherical objects. However, one can also shape the object to control the light deflection arising from the light-matter interaction and, hence, achieve desired optomechanical effects. In this work we look into the object shaping aspect and its potential for controlled optical manipulation. Using a simple bent waveguide as example, our numerical simulations show that the guided deflection of light efficiently converts incident light momentum into optical force with one order-of-magnitude improvement in the efficiency factor relative to a microbead, which is comparable to the improvement expected from orthogonal deflection with a perfect mirror. This improvement is illustrated in proof-of-principle experiments demonstrating the optical manipulation of two-photon polymerized waveguides. Results show that the force on the waveguide exceeds the combined forces on spherical trapping handles. Furthermore, it shows that static illumination can exert a constant force on a moving structure, unlike the position-dependent forces from harmonic potentials in conventional trapping.

17.
J Am Chem Soc ; 134(2): 944-54, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22148684

RESUMO

Being able to control in time and space the positioning, orientation, movement, and sense of rotation of nano- to microscale objects is currently an active research area in nanoscience, having diverse nanotechnological applications. In this paper, we demonstrate unprecedented control and maneuvering of rod-shaped or tubular nanostructures with high aspect ratios which are formed by self-assembling synthetic porphyrins. The self-assembly algorithm, encoded by appended chemical-recognition groups on the periphery of these porphyrins, is the same as the one operating for chlorosomal bacteriochlorophylls (BChl's). Chlorosomes, rod-shaped organelles with relatively long-range molecular order, are the most efficient naturally occurring light-harvesting systems. They are used by green photosynthetic bacteria to trap visible and infrared light of minute intensities even at great depths, e.g., 100 m below water surface or in volcanic vents in the absence of solar radiation. In contrast to most other natural light-harvesting systems, the chlorosomal antennae are devoid of a protein scaffold to orient the BChl's; thus, they are an attractive goal for mimicry by synthetic chemists, who are able to engineer more robust chromophores to self-assemble. Functional devices with environmentally friendly chromophores-which should be able to act as photosensitizers within hybrid solar cells, leading to high photon-to-current conversion efficiencies even under low illumination conditions-have yet to be fabricated. The orderly manner in which the BChl's and their synthetic counterparts self-assemble imparts strong diamagnetic and optical anisotropies and flow/shear characteristics to their nanostructured assemblies, allowing them to be manipulated by electrical, magnetic, or tribomechanical forces.


Assuntos
Complexos de Proteínas Captadores de Luz/síntese química , Porfirinas/síntese química , Anisotropia , Bacterioclorofilas/química , Dicroísmo Circular , Membranas Artificiais , Microscopia Eletrônica de Varredura , Modelos Moleculares , Estrutura Molecular
18.
Opt Express ; 17(8): 6578-83, 2009 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-19365483

RESUMO

Cellular development is highly influenced by the surrounding microenvironment. We propose user-reconfigurable microenvironments and bio-compatible scaffolds as an approach for understanding cellular development processes. We demonstrate a model platform for constructing versatile microenvironments by fabricating morphologically complex microstructures by two-photon polymerization (2PP) and then assembling these archetypal building blocks into various configurations using multiple, real-time configurable counterpropagating-beam (CB) traps. The demonstrated capacity for handling feature-rich microcomponents may be further developed into a generalized microassembly platform.


Assuntos
Engenharia Biomédica/instrumentação , Técnicas de Cultura de Células/instrumentação , Separação Celular/instrumentação , Dispositivos Ópticos , Pinças Ópticas , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Opt Express ; 15(14): 9009-14, 2007 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19547240

RESUMO

Optical trapping and manipulation offer great flexibility as a non-contact microassembly tool. Its application to the assembly of microscale building blocks may open new doors for micromachine technology. In this work, we demonstrate all-optical assembly of microscopic puzzle pieces in a fluidic environment using programmable arrays of trapping beams. Identical shape-complimentary pieces are optically fabricated with submicron resolution using two-photon polymerization (2PP) technique. These are efficiently assembled into space-filling tessellations by a multiple-beam optical micromanipulation system. The flexibility of the system allows us to demonstrate both user-interactive and computer-automated modes of serial and parallel assembly of microscale objects with high spatial and angular positioning precision.

20.
Opt Express ; 15(22): 14488-97, 2007 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-19550727

RESUMO

Photopolymerisation by scanning a focused laser beam is a powerful method to build structures of arbitrary complexity with submicrometer resolution. We introduce parallel photopolymerisation to enhance the efficiency. Instead of multidimensional scanning of a single focus, the structure is generated simultaneously with diffractive patterns. We used fixed diffractive optical elements (DOEs), kinoforms, and Spatial Light Modulators (SLMs). The possibilities of photopolymerisation using SLM were investigated: the added flexibility using the programmable device is demonstrated. By using these DOEs, straight and helical cross shaped columns were produced with a single scan at a rate about an order of magnitude faster than by simple scanning. The produced helical structures could be rotated by optical tweezers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA