Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Craniovertebr Junction Spine ; 13(2): 159-162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837435

RESUMO

Background: The atlantoaxial complex contributes to significant neck movements, especially the axial rotation. Its instability is currently treated with various C1-C2 fusion techniques. This however, considerably hampers the neck movements and affects the quality of life; a C1-C2 motion preserving arthroplasty could potentially overcome this drawback. Objectives: We evaluate the range of motion (ROM) of lateral C1-C2 artificial joints in cadaveric models. Materials and Methods: This is an in vitro cadaveric biomechanical study. After C1-C2 arthroplasty through a posterior approach, the C1-C2 ROM was tested in 4 fresh-frozen human cadaveric specimens, before and after destabilization. Results: The mean axial rotation demonstrated after the placement of C1-C2 joint implants was 15.46 degrees on the right and 16.03 degrees on the left side; the prosthesis provided stability, with 46% of the baseline C1-C2 axial rotation on either side. The ROM achieved in the other axes was less compared with that of intact specimens. To initiate rotation, a higher moment of 1.5 Nm was required in the presence of joint implants compared to 0.5 NM in unimplanted specimens. Conclusions: In our preliminary ROM evaluation, the C1-C2 arthroplasty appears to be stable and provides about half of the range of atlantoaxial rotation. It has the potential for joint motion preservation in the treatment of atlantoaxial instability resulting from lateral C1-C2 joint pathologies.

2.
Spine (Phila Pa 1976) ; 47(10): E456-E465, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34935758

RESUMO

STUDY DESIGN: Finite element analysis (FEA). OBJECTIVE: The aim of this study was to determine biomechanical differences between traditional growing rod (TGR) and spring distraction system (SDS) treatment of early-onset scoliosis. SUMMARY OF BACKGROUND DATA: Many "growth-friendly" implants like the TGR show high rates of implant failure, spinal stiffening, and intervertebral disc (IVD) height loss. We developed the SDS, which employs continuous, dynamic forces to mitigate these limitations. The present FEA compares TGR and SDS implantation, followed by an 18-month growth period. METHODS: Two representative, ligamentous, scoliotic FEA models were created for this study; one representing TGR and one representing SDS. initial implantation, and up to 18 months of physeal spinal growth were simulated. The SDS model was continuously distracted over this period; the TGR model included two additional distractions following index surgery. Outcomes included differences in rod stress, spinal morphology and iVD stress-shielding. RESULTS: Maximum postoperative von Mises stress was 249MPa for SDS, and 205MPa for TGR. During the 6-month TGR distraction, TGR rod stress increased over two-fold to a maximum stress of 417MPa, compared to a maximum of 262 MPa in the SDS model at 6-month follow-up. During subsequent follow-up periods, TGR rod stress remained consistently higher than stresses in the SDS model. Additional lengthenings in the TGR model led to a smaller residual curve (16.08) and higher T1-S1 growth (359 mm) at 18-month follow-up compared to the SDS model (26.98, 348 mm). During follow-up, there was less stress-shielding of the IVDs in the SDS model, compared to the TGR model. At 18-month follow-up, upper and lower IVD surfaces of the SDS model were loaded more in compression than their TGR counterparts (mean upper: +112 ±â€Š19N; mean lower: +100 ±â€Š17N). CONCLUSION: In the present FEA, TGR treatment resulted in slightly larger curve correction compared to SDS, at the expense of increased IVD stress-shielding and a higher risk of rod fractures. LEVEL OF EVIDENCE: N/A.


Assuntos
Escoliose , Fusão Vertebral , Análise de Elementos Finitos , Humanos , Próteses e Implantes , Escoliose/cirurgia , Coluna Vertebral
3.
Int J Spine Surg ; 15(2): 315-323, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33900989

RESUMO

BACKGROUND: This study evaluates the accuracy, biomechanical profile, and learning curve of the transverse process trajectory technique (TPT) compared to the straightforward (SF) and in-out-in (IOI) techniques. SF and IOI have been used for fixation in the thoracic spine. Although widely used, there are associated learning curves and symptomatic pedicular breaches. We have found the transverse process to be a reproducible pathway into the pedicle. METHODS: Three surgeons with varying experience (experienced [E] with 20 years in practice, surgeon [S] with less than 10 years in practice, and senior resident trainee [T] with no experience with TPT) operated on 8 cadavers. In phase 1, each surgeon instrumented 2 cadavers, alternating between TPT and SF from T1 to T12 (n = 48 total levels). In phase 2, the E and T surgeons instrumented 1 cadaver each, alternating between TPT and IOI. Computed tomography scans were analyzed for accuracy of screw placement, defined as the percentage of placements without critical breaches. Axial pullout and derotational force testing were performed. Statistical analyses include paired t test and analysis of variance with Tukey correction. RESULTS: Overall accuracy of screw placement was comparable between techniques (TPT: 92.7%; SF: 97.2%; IOI: 95.8%; P = .4151). Accuracy by technique did not differ for each individual surgeon (E: P = .7733; S: P = .3475; T: P = .4191) or by experience level by technique (TPT: P = .1127; FH: P = .5979; IOI: P = .5935). Pullout strength was comparable between TPT and SF (571 vs 442 N, P = .3164) but was greater for TPT versus IOI (454 vs 215 N, P = .0156). There was a trend toward improved derotational force for TPT versus SF (1.06 vs 0.93 Nm/degrees, P = .0728) but not for TPT versus IOI (1.36 vs 1.16 Nm/degrees, P = .74). Screw placement time was shortest for E and longest for T for TPT and SF and not different for IOI (TPT: P = .0349; SF: P < .0001; IOI: P = .1787) but did not vary by technique. CONCLUSIONS: We describe the TPT, which uses the transverse process as a corridor through the pedicle. TPT is an accurate method of thoracic pedicle screw placement with potential biomechanical advantages and with acceptable learning curve characteristics. CLINICAL RELEVANCE: This study provides the surgeon with a new trajectory for pedicle screw placement that can be used in clinical practice.

4.
J Spinal Cord Med ; 43(1): 98-105, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010500

RESUMO

Context: To evaluate the stability provided by a new bilateral fixation technique using an in vitro investigation for posterior lumbar segmental instrumentation.Design: Experimental cadaver study. In this study, we propose an alternative technique for a posterior lumbar fixation technique called "inferior-oblique transdiscal fixation" (IOTF).Setting: Study performed at Engineering Center for Orthopedic Research Exellence (ECORE) in Toledo University-Ohio.Participants: Six human lumbar cadaveric specimen used in this study.Interventions: In this study, we propose an alternative technique for a posterior lumbar fixation technique called "inferior-oblique transdiscal fixation" (IOTF). As a novel contribution to the classical technique, the entry point of the screw is the supero-lateral point of the intersecting line drawn between the corpus and the pedicle of the upper vertebra. This approach enables the fixation of two adjacent vertebrae using a single screw on each side without utilizing connecting rods.Outcome Measures: Flexion (Flex), extension (Ext), right and left lateral bending (LB & RB), and right and left axial rotation (LR & RR), and the position data were captured at each load step using the Optotrak motion measurement system and compared for IOTF and posterior transpedicular stabilization.Results: The Posterior stabilization system (PSS) and IOTF significantly reduced the ROM of L4-L5 segment compared to intact segment's ROM. During axial rotation (AR) IOTF fused index segment more than PSS. Besides this, addition of transforaminal lumbar interbody fusion (TLIF) cage improved the stabilization of IOTF system during flexion, extension and lateral bending. Whereas, PSS yielded better fusion results during extension compared to IOTF with and without interbody fusion cages.Conclusions: We hypothesized that the new posterior bilateral system would significantly decrease motion compared to the intact spine. This cadaver study showed that the proposed new posterior fusion technique IOTF fused the index segment in a similar fashion to the classical pedicle screw fusion technique.


Assuntos
Cadáver , Técnicas In Vitro , Vértebras Lombares/cirurgia , Parafusos Pediculares , Traumatismos da Medula Espinal/complicações , Fusão Vertebral , Dispositivos de Fixação Cirúrgica , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Amplitude de Movimento Articular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA