Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 625(7993): 195-203, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123684

RESUMO

Progression through the cell cycle is controlled by regulated and abrupt changes in phosphorylation1. Mitotic entry is initiated by increased phosphorylation of mitotic proteins, a process driven by kinases2, whereas mitotic exit is achieved by counteracting dephosphorylation, a process driven by phosphatases, especially PP2A:B553. Although the role of kinases in mitotic entry is well established, recent data have shown that mitosis is only successfully initiated when the counterbalancing phosphatases are also inhibited4. Inhibition of PP2A:B55 is achieved by the intrinsically disordered proteins ARPP195,6 and FAM122A7. Despite their critical roles in mitosis, the mechanisms by which they achieve PP2A:B55 inhibition is unknown. Here, we report the single-particle cryo-electron microscopy structures of PP2A:B55 bound to phosphorylated ARPP19 and FAM122A. Consistent with our complementary NMR spectroscopy studies, both intrinsically disordered proteins bind PP2A:B55, but do so in highly distinct manners, leveraging multiple distinct binding sites on B55. Our extensive structural, biophysical and biochemical data explain how substrates and inhibitors are recruited to PP2A:B55 and provide a molecular roadmap for the development of therapeutic interventions for PP2A:B55-related diseases.


Assuntos
Microscopia Crioeletrônica , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Intrinsicamente Desordenadas , Fosfoproteínas , Proteína Fosfatase 2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/ultraestrutura , Mitose , Ressonância Magnética Nuclear Biomolecular , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosfoproteínas/ultraestrutura , Fosforilação , Proteína Fosfatase 2/química , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/ultraestrutura
2.
bioRxiv ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37693408

RESUMO

Progression through the cell cycle is controlled by regulated and abrupt changes in phosphorylation.1 Mitotic entry is initiated by increased phosphorylation of mitotic proteins, a process driven by kinases,2 while mitotic exit is achieved by counteracting dephosphorylation, a process driven by phosphatases, especially PP2A:B55.3 While the role of kinases in mitotic entry is well-established, recent data have shown that mitosis is only successfully initiated when the counterbalancing phosphatases are also inhibited.4 For PP2A:B55, inhibition is achieved by the two intrinsically disordered proteins (IDPs), ARPP19 (phosphorylation-dependent)6,7 and FAM122A5 (inhibition is phosphorylation-independent). Despite their critical roles in mitosis, the mechanisms by which they achieve PP2A:B55 inhibition is unknown. Here, we report the cryo-electron microscopy structures of PP2A:B55 bound to phosphorylated ARPP19 and FAM122A. Consistent with our complementary NMR spectroscopy studies both IDPs bind PP2A:B55, but do so in highly distinct manners, unexpectedly leveraging multiple distinct binding sites on B55. Our extensive structural, biophysical and biochemical data explain how substrates and inhibitors are recruited to PP2A:B55 and provides a molecular roadmap for the development of therapeutic interventions for PP2A:B55 related diseases.

3.
BMC Biol ; 14: 71, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27576487

RESUMO

BACKGROUND: The Cry6 family of proteins from Bacillus thuringiensis represents a group of powerful toxins with great potential for use in the control of coleopteran insects and of nematode parasites of importance to agriculture. These proteins are unrelated to other insecticidal toxins at the level of their primary sequences and the structure and function of these proteins has been poorly studied to date. This has inhibited our understanding of these toxins and their mode of action, along with our ability to manipulate the proteins to alter their activity to our advantage. To increase our understanding of their mode of action and to facilitate further development of these proteins we have determined the structure of Cry6Aa in protoxin and trypsin-activated forms and demonstrated a pore-forming mechanism of action. RESULTS: The two forms of the toxin were resolved to 2.7 Å and 2.0 Å respectively and showed very similar structures. Cry6Aa shows structural homology to a known class of pore-forming toxins including hemolysin E from Escherichia coli and two Bacillus cereus proteins: the hemolytic toxin HblB and the NheA component of the non-hemolytic toxin (pfam05791). Cry6Aa also shows atypical features compared to other members of this family, including internal repeat sequences and small loop regions within major alpha helices. Trypsin processing was found to result in the loss of some internal sequences while the C-terminal region remains disulfide-linked to the main core of the toxin. Based on the structural similarity of Cry6Aa to other toxins, the mechanism of action of the toxin was probed and its ability to form pores in vivo in Caenorhabditis elegans was demonstrated. A non-toxic mutant was also produced, consistent with the proposed pore-forming mode of action. CONCLUSIONS: Cry6 proteins are members of the alpha helical pore-forming toxins - a structural class not previously recognized among the Cry toxins of B. thuringiensis and representing a new paradigm for nematocidal and insecticidal proteins. Elucidation of both the structure and the pore-forming mechanism of action of Cry6Aa now opens the way to more detailed analysis of toxin specificity and the development of new toxin variants with novel activities.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/toxicidade , Endotoxinas/química , Endotoxinas/toxicidade , Proteínas Hemolisinas/química , Proteínas Hemolisinas/toxicidade , Praguicidas/toxicidade , Proteínas Citotóxicas Formadoras de Poros/química , Homologia Estrutural de Proteína , Animais , Toxinas de Bacillus thuringiensis , Bioensaio , Caenorhabditis elegans/efeitos dos fármacos , Cristalografia por Raios X , Dissulfetos/metabolismo , Modelos Moleculares , Praguicidas/química , Conformação Proteica , Tripsina/metabolismo
4.
PLoS One ; 9(11): e112555, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25390338

RESUMO

Bacillus thuringiensis strains are well known for the production of insecticidal proteins upon sporulation and these proteins are deposited in parasporal crystalline inclusions. The majority of these insect-specific toxins exhibit three domains in the mature toxin sequence. However, other Cry toxins are structurally and evolutionarily unrelated to this three-domain family and little is known of their three dimensional structures, limiting our understanding of their mechanisms of action and our ability to engineer the proteins to enhance their function. Among the non-three domain Cry toxins, the Cry34Ab1 and Cry35Ab1 proteins from B. thuringiensis strain PS149B1 are required to act together to produce toxicity to the western corn rootworm (WCR) Diabrotica virgifera virgifera Le Conte via a pore forming mechanism of action. Cry34Ab1 is a protein of ∼14 kDa with features of the aegerolysin family (Pfam06355) of proteins that have known membrane disrupting activity, while Cry35Ab1 is a ∼44 kDa member of the toxin_10 family (Pfam05431) that includes other insecticidal proteins such as the binary toxin BinA/BinB. The Cry34Ab1/Cry35Ab1 proteins represent an important seed trait technology having been developed as insect resistance traits in commercialized corn hybrids for control of WCR. The structures of Cry34Ab1 and Cry35Ab1 have been elucidated to 2.15 Šand 1.80 Šresolution, respectively. The solution structures of the toxins were further studied by small angle X-ray scattering and native electrospray ion mobility mass spectrometry. We present here the first published structure from the aegerolysin protein domain family and the structural comparisons of Cry34Ab1 and Cry35Ab1 with other pore forming toxins.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/química , Endotoxinas/química , Proteínas Fúngicas/química , Proteínas Hemolisinas/química , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Cristalografia por Raios X , Endotoxinas/genética , Proteínas Fúngicas/genética , Expressão Gênica , Proteínas Hemolisinas/genética , Modelos Moleculares , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
5.
J Mol Biol ; 385(1): 11-21, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18992256

RESUMO

Protein phosphatase 1 occurs in all tissues and regulates many pathways, ranging from cell-cycle progression to carbohydrate metabolism. Many naturally occurring, molecular toxins modulate PP1 activity, though the exact mechanism of this differential regulation is not understood. A detailed elucidation of these interactions is crucial for understanding the cellular basis of phosphatase function and signaling pathways but, more importantly, they can serve as the basis for highly specific therapeutics, e.g. against cancer. We report the crystal structures of PP1 in complex with nodularin-R at 1.63 A and tautomycin at 1.70 A resolution. The PP1:nodularin-R complex was used to demonstrate the utility of our improved PP1 production technique, which produces highly active, soluble PP1. Tautomycin is one of the few toxins that reportedly preferentially binds PP1>PP2A. Therefore, the PP1:tautomycin structure is the first complex structure with a toxin with preferred PP1 specificity. Furthermore, since tautomycin is a linear non-peptide-based toxin, our reported structure will aid the design of lead compounds for novel PP1-specific pharmaceuticals.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Peptídeos Cíclicos/química , Proteína Fosfatase 1/química , Piranos/química , Compostos de Espiro/química , Sítios de Ligação , Cantaridina/química , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Proteína Fosfatase 1/antagonistas & inibidores , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
6.
Biochemistry ; 46(9): 2333-44, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-17279777

RESUMO

Neurabin and spinophilin are neuronal scaffolding proteins that play important roles in the regulation of synaptic transmission through their ability to target protein phosphatase 1 (PP1) to dendritic spines where PP1 dephosphorylates and inactivates glutamate receptors. However, thus far, it is still unknown how neurabin and spinophilin themselves are targeted to these membrane receptors. Spinophilin and neurabin contain a single PDZ domain, a common protein-protein interaction recognition motif, which are 86% identical in sequence. We report the structures of both the neurabin and spinophilin PDZ domains determined using biomolecular NMR spectroscopy. These proteins form the canonical PDZ domain fold. However, despite their high degree of sequence identity, there are distinct and significant structural differences between them, especially between the peptide binding pockets. Using two-dimensional 1H-15N HSQC NMR analysis, we demonstrate that C-terminal peptide ligands derived from glutamatergic AMPA and NMDA receptors and cytosolic proteins directly and differentially bind spinophilin and neurabin PDZ domains. This peptide binding data also allowed us to classify the neurabin and spinophilin PDZ domains as the first identified neuronal hybrid class V PDZ domains, which are capable of binding both class I and II peptides. Finally, the ability to bind to glutamate receptor subunits suggests that the PDZ domains of neurabin and spinophilin are important for targeting PP1 to C-terminal phosphorylation sites in AMPA and NMDA receptor subunits.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sequência de Aminoácidos , Proteínas dos Microfilamentos/química , Modelos Moleculares , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Conformação Proteica , Homologia de Sequência de Aminoácidos
8.
Science ; 309(5734): 581-5, 2005 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-15961631

RESUMO

Toll-like receptors (TLRs) play key roles in activating immune responses during infection. The human TLR3 ectodomain structure at 2.1 angstroms reveals a large horseshoe-shaped solenoid assembled from 23 leucine-rich repeats (LRRs). Asparagines conserved in the 24-residue LRR motif contribute extensive hydrogen-bonding networks for solenoid stabilization. TLR3 is largely masked by carbohydrate, but one face is glycosylation-free, which suggests its potential role in ligand binding and oligomerization. Highly conserved surface residues and a TLR3-specific LRR insertion form a homodimer interface in the crystal, whereas two patches of positively charged residues and a second insertion would provide an appropriate binding site for double-stranded RNA.


Assuntos
Glicoproteínas de Membrana/química , Receptores de Superfície Celular/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Glicosilação , Humanos , Ligação de Hidrogênio , Leucina/química , Ligantes , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , RNA de Cadeia Dupla/metabolismo , Receptores de Superfície Celular/metabolismo , Sequências Repetitivas de Aminoácidos , Transdução de Sinais , Eletricidade Estática , Propriedades de Superfície , Receptor 3 Toll-Like , Receptores Toll-Like
9.
J Am Chem Soc ; 127(15): 5540-51, 2005 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-15826192

RESUMO

Protein native state stabilization imposed by small molecule binding is an attractive strategy to prevent the misfolding and misassembly processes associated with amyloid diseases. Transthyretin (TTR) amyloidogenesis requires rate-limiting tetramer dissociation before misassembly of a partially denatured monomer ensues. Selective stabilization of the native TTR tetramer over the dissociative transition state by small molecule binding to both thyroxine binding sites raises the kinetic barrier of tetramer dissociation, preventing amyloidogenesis. Assessing the amyloidogenicity of a TTR tetramer having only one amyloidogenesis inhibitor (I) bound is challenging because the two small molecule binding constants are generally not distinct enough to allow for the exclusive formation of TTR.I in solution to the exclusion of TTR.I(2) and unliganded TTR. Herein, we report a method to tether one fibril formation inhibitor to TTR by disulfide bond formation. Occupancy of only one of the two thyroxine binding sites is sufficient to inhibit tetramer dissociation in 6.0 M urea and amyloidogenesis under acidic conditions by imposing kinetic stabilization on the entire tetramer. The sufficiency of single occupancy for stabilizing the native state of TTR provides the incentive to search for compounds displaying striking negative binding cooperativity (e.g., K(d1) in nanomolar range and K(d2) in the micromolar to millimolar range), enabling lower doses of inhibitor to be employed in the clinic, mitigating potential side effects.


Assuntos
Amiloide/antagonistas & inibidores , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Pré-Albumina/química , Pré-Albumina/metabolismo , Amiloide/biossíntese , Benzoatos/química , Benzoatos/metabolismo , Cristalografia por Raios X , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Tiroxina/química , Tiroxina/metabolismo
10.
J Mol Biol ; 347(4): 841-54, 2005 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15769474

RESUMO

The amyloidogenic homotetrameric protein transthyretin (TTR) must undergo rate-limiting dissociation to partially denatured monomers in order to aggregate. TTR contains two distinct quaternary interfaces, one of which defines the binding sites for thyroxine and small-molecule amyloidogenesis inhibitors. Kinetic stabilization of the tetramer can be accomplished either by the binding of amyloidogenesis inhibitors selectively to the native state over the dissociative transition state or by the introduction of trans-suppressor subunits (T119M) into heterotetramers to destabilize the dissociative transition state. In each case, increasing the dissociation activation barrier prevents tetramer dissociation. Herein, we demonstrate that tethering two subunits whose quaternary interface defines the thyroxine binding site also dramatically increases the barrier for tetramer dissociation, apparently by destabilization of the dissociative transition state. The tethered construct (TTR-L-TTR)2 is structurally and functionally equivalent to wild-type TTR. Urea is unable to denature (TTR-L-TTR)2, yet it is able to maintain the denatured state once denaturation is achieved by GdnHCl treatment, suggesting that (TTR-L-TTR)2 is kinetically rather than thermodynamically stabilized, consistent with the identical wild-type TTR and (TTR-L-TTR)2 GdnHCl denaturation curves. Studies focused on a construct containing a single TTR-L-TTR chain and two normal monomer subunits establish that alteration of only one quaternary structural interface is sufficient to impose kinetic stabilization on the entire quaternary structure.


Assuntos
Amiloide/metabolismo , Pré-Albumina/química , Pré-Albumina/metabolismo , Engenharia de Proteínas , Amiloide/biossíntese , Cristalografia por Raios X , Guanidina/farmacologia , Cinética , Ligantes , Modelos Moleculares , Pré-Albumina/genética , Pré-Albumina/isolamento & purificação , Ligação Proteica , Desnaturação Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Espectrometria de Fluorescência , Ureia/farmacologia
11.
J Mol Biol ; 344(5): 1175-81, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15561137

RESUMO

Triggering receptor expressed on myeloid cells (TREM) 1 is an activating receptor expressed on myeloid cells whose ligand(s) remain elusive. TREM-1 stimulation activates neutrophils and monocytes and induces the secretion of pro-inflammatory molecules, which amplifies the Toll-like receptor-initiated responses to invading pathogens. In addition, TREM-1 mediates the septic shock pathway, and thus represents a potential therapeutic target. We report the crystal structure of the mouse TREM-1 extracellular domain at 1.76A resolution. The mouse extracellular domain is monomeric, consistent with our previous human TREM-1 structure, and strongly supports the contention that the globular TREM-1 head is a monomer contrary to proposals of a symmetric dimer.


Assuntos
Glicoproteínas de Membrana/química , Receptores Imunológicos/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Estereoisomerismo , Receptor Gatilho 1 Expresso em Células Mieloides
12.
J Mol Biol ; 342(4): 1237-48, 2004 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-15351648

RESUMO

The triggering receptor expressed on myeloid cells (TREM) family of single extracellular immunoglobulin receptors includes both activating and inhibitory isoforms whose ligands are unknown. TREM-1 activation amplifies the Toll-like receptor initiated responses to invading pathogens allowing the secretion of pro-inflammatory chemokines and cytokines. Hence, TREM-1 amplifies the inflammation induced by both bacteria and fungi, and thus represents a potential therapeutic target. We report the crystal structure of the human TREM-1 extracellular domain at 1.47 A resolution. The overall fold places it within the V-type immunoglobulin domain family and reveals close homology with Ig domains from antibodies, T-cell receptors and other activating receptors, such as NKp44. With the additional use of analytical ultracentrifugation and 1H NMR spectroscopy of both human and mouse TREM-1, we have conclusively demonstrated the monomeric state of this extracellular ectodomain in solution and, presumably, of the TREM family in general.


Assuntos
Glicoproteínas de Membrana/química , Receptores Imunológicos/química , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Homologia de Sequência de Aminoácidos , Receptor Gatilho 1 Expresso em Células Mieloides , Ultracentrifugação
13.
Acta Crystallogr D Biol Crystallogr ; 59(Pt 2): 290-8, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12554939

RESUMO

The crystal structure at 1.54 A resolution of a double mutant of interleukin-1beta (F42W/W120F), a cytokine secreted by macrophages, was determined by multiple-wavelength anomalous dispersion (MAD) using data from highly twinned selenomethionine-modified crystals. The space group is P4(3), with unit-cell parameters a = b = 53.9, c = 77.4 A. Self-rotation function analysis and various intensity statistics revealed the presence of merohedral twinning in crystals of both the native (twinning fraction alpha approximately 0.35) and SeMet (alpha approximately 0.40) forms. Structure determination and refinement are discussed with emphasis on the possible reasons for successful phasing using untreated twinned MAD data.


Assuntos
Interleucina-1/química , Cristalização , Cristalografia por Raios X/métodos , Interleucina-1/genética , Macrófagos/química , Modelos Moleculares , Conformação Proteica , Software , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA