Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Ecol Evol ; 24(1): 12, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262959

RESUMO

BACKGROUND: Scots pine (Pinus sylvestris L.) underwent significant population declines across much of northwest Europe during the mid-to-late Holocene and was thought to have become extirpated in Ireland from about 400 AD. However, most extant populations are plantations reintroduced from Scotland. Others are naturalised therefrom and one in Western Ireland is a putative relict. In this paper, Scots pine in Ireland are genetically described for the first time. RESULTS: Using two mitochondrial (mtDNA) loci, eight chloroplast (cpSSR) and 18 nuclear (nSSR) loci, the genetic composition and diversity of 19 Irish Scots pine populations is described and compared to other European populations. All trees sampled in Ireland were fixed for mitotype a, which is the most common across northwest Europe. By contrast, cpSSR (HCP = 0.967) and nSSR (He = 0.540) variation was high, and comparable with estimates for other regions across the species range. Differentiation at both sets of loci were similarly low (cpSSR FST = 0.019; nSSR FST = 0.018), but populations from continental Europe were significantly differentiated from all Irish populations based on nSSR variation. CONCLUSIONS: All Irish Scots pine are likely part of a common Irish-Scottish gene pool which diverged from continental Scots pine following post-glacial recolonisation. A high genetic diversity and an absence of evidence of inbreeding suggests the regional decline of Scots pine did not critically reduce allelic variation. The post-glacial relationship between Irish and Scottish pine is discussed, and a suggestion from recent palaeoecological work that reintroduced Scots pine be managed as a native species is now further supported by genetic data.


Assuntos
Pinus sylvestris , Pinus , Irlanda , Europa (Continente) , Alelos
3.
Food Chem ; 239: 32-39, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28873575

RESUMO

Due to increasing number of food fraud incidents, there is an inherent need for the development and implementation of analytical platforms enabling detection and quantitation of adulteration. In this study a set of unique biomarkers of commonly found oregano adulterants became the targets in the development of a LC-MS/MS method which underwent a rigorous in-house validation. The method presented very high selectivity and specificity, excellent linearity (R2>0.988) low decision limits and detection capabilities (<2%), acceptable accuracy (intra-assay 92-113%, inter-assay 69-138%) and precision (CV<20%). The method was compared with an established FTIR screening assay and revealed a good correlation of quali- and quantitative results (R2>0.81). An assessment of 54 suspected adulterated oregano samples revealed that almost 90% of them contained at least one bulking agent, with a median level of adulteration of 50%. Such innovative methodologies need to be established as routine testing procedures to detect and ultimately deter food fraud.


Assuntos
Alimentos , Biomarcadores , Cromatografia Líquida , Fraude , Humanos , Origanum , Espectrometria de Massas em Tandem
4.
Nat Genet ; 49(6): 904-912, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28481341

RESUMO

Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.


Assuntos
Betula/genética , Genoma de Planta , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Adaptação Biológica/genética , Betula/fisiologia , Finlândia , Duplicação Gênica , Genética Populacional , Filogenia , Densidade Demográfica
5.
Ann Bot ; 115(2): 179-86, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25471098

RESUMO

BACKGROUND AND AIMS: Although hybridization can play a positive role in plant evolution, it has been shown that excessive unidirectional hybridization can result in replacement of a species' gene pool, and even the extinction of rare species via genetic assimilation. This study examines levels of introgression between the common Saxifraga spathularis and its rarer congener S. hirsuta, which have been observed to hybridize in the wild where they occur sympatrically. METHODS: Seven species-specific single nucleotide polymorphisms (SNPs) were analysed in 1025 plants representing both species and their hybrid, S. × polita, from 29 sites across their ranges in Ireland. In addition, species distribution modelling was carried out to determine whether the relative abundance of the two parental species is likely to change under future climate scenarios. KEY RESULTS: Saxifraga spathularis individuals tended to be genetically pure, exhibiting little or no introgression from S. hirsuta, but significant levels of introgression of S. spathularis alleles into S. hirsuta were observed, indicating that populations exhibiting S. hirsuta morphology are more like a hybrid swarm, consisting of backcrosses and F2s. Populations of the hybrid, S. × polita, were generally comprised of F1s or F2s, with some evidence of backcrossing. Species distribution modelling under projected future climate scenarios indicated an increase in suitable habitats for both parental species. CONCLUSIONS: Levels of introgression observed in this study in both S. spathularis and S. hirsuta would appear to be correlated with the relative abundance of the species. Significant introgression of S. spathularis alleles was detected in the majority of the S. hirsuta populations analysed and, consequently, ongoing introgression would appear to represent a threat to the genetic integrity of S. hirsuta, particularly in areas where the species exists sympatrically with its congener and where it is greatly outnumbered.


Assuntos
Hibridização Genética , Endogamia , Polimorfismo de Nucleotídeo Único , Saxifragaceae/classificação , Saxifragaceae/genética , Ecossistema , Irlanda , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Especificidade da Espécie , Simpatria
6.
BMC Plant Biol ; 14: 202, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25928320

RESUMO

BACKGROUND: Salix caprea is a cold-tolerant pioneer species that is ecologically important in Europe and western and central Asia. However, little data is available on its population genetic structure and molecular ecology. We describe the levels of geographic population genetic structure in natural Irish populations of S. caprea and determine the extent of gene flow and sexual reproduction using both chloroplast and nuclear simple sequence repeats (SSRs). RESULTS: A total of 183 individuals from 21 semi-natural woodlands were collected and genotyped. Gene diversity across populations was high for the chloroplast SSRs (H T = 0.21-0.58) and 79 different haplotypes were discovered, among them 48% were unique to a single individual. Genetic differentiation of populations was found to be between moderate and high (mean G ST = 0.38). For the nuclear SSRs, G ST was low at 0.07 and observed heterozygosity across populations was high (H O = 0.32-0.51); only 9.8% of the genotypes discovered were present in two or more individuals. For both types of markers, AMOVA showed that most of the variation was within populations. Minor geographic pattern was confirmed by a Bayesian clustering analysis. Gene flow via pollen was found to be approximately 7 times more important than via seeds. CONCLUSIONS: The data are consistent with outbreeding and indicate that there are no significant barriers for gene flow within Ireland over large geographic distances. Both pollen-mediated and seed-mediated gene flow were found to be high, with some of the populations being more than 200 km apart from each other. These findings could simply be due to human intervention through seed trade or accidental transportation of both seeds and pollen. These results are of value to breeders wishing to exploit natural genetic variation and foresters having to choose planting material.


Assuntos
DNA de Cloroplastos/química , Fluxo Gênico , Variação Genética , Salix/genética , Teorema de Bayes , Genótipo , Haplótipos , Repetições de Microssatélites , Filogeografia
7.
Biotechnol Biofuels ; 6(1): 114, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23924375

RESUMO

BACKGROUND: Little is known about the levels of variation in lignin or other wood related genes in Salix, a genus that is being increasingly used for biomass and biofuel production. The lignin biosynthesis pathway is well characterized in a number of species, including the model tree Populus. We aimed to transfer the genomic resources already available in Populus to its sister genus Salix to assess levels of variation within genes involved in wood formation. RESULTS: Amplification trials for 27 gene regions were undertaken in 40 Salix taxa. Twelve of these regions were sequenced. Alignment searches of the resulting sequences against reference databases, combined with phylogenetic analyses, showed the close similarity of these Salix sequences to Populus, confirming homology of the primer regions and indicating a high level of conservation within the wood formation genes. However, all sequences were found to vary considerably among Salix species, mainly as SNPs with a smaller number of insertions-deletions. Between 25 and 176 SNPs per kbp per gene region (in predicted exons) were discovered within Salix. CONCLUSIONS: The variation found is sizeable but not unexpected as it is based on interspecific and not intraspecific comparison; it is comparable to interspecific variation in Populus. The characterisation of genetic variation is a key process in pre-breeding and for the conservation and exploitation of genetic resources in Salix. This study characterises the variation in several lignocellulose gene markers for such purposes.

8.
Mol Ecol Resour ; 12(5): 894-908, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22783911

RESUMO

We have evaluated High Resolution Melting (HRM) analysis as a method for one-step haplotype identification in phylogeographic analysis. Using two adjoined internal amplicons (c. 360 and 390 bp) at the chloroplast rps16 intron (c. 750 bp) we applied HRM to identify haplotypes in 21 populations of two European arctic-alpine herb species Arenaria ciliata and Arenaria norvegica (Caryophyllaceae). From 446 accessions studied, 20 composite rps16 haplotypes were identified by the melting-curve protocol, 18 of which could be identified uniquely. In a comparative sensitivity analysis with in silico PCR-RFLP, only seven of these 20 haplotypes could be identified uniquely. Observed in vitro experimental HRM profiles were corroborated by in silico HRM analysis generated on uMelt(SM) . In silico mutation analysis carried out on a 360 bp wild-type rps16I amplicon determined that the expected rate of missed single-nucleotide polymorphisms (SNP) detection in vitro was similar to existing evaluations of HRM sensitivity, with transversion SNPs being more likely to go undetected compared to transition SNPs. In vitro HRM successfully discriminated between all amplicon templates differing by two or more base changes (352 cases) and between 11 pairs of amplicons where the only difference was a single transition or transversion SNP. Only one pairwise comparison yielded no discernable HRM curve difference between haplotypes, and these samples differed by one transversion (C/G) SNP. HRM analysis represents an untapped resource in phylogeographic analysis, and with appropriate primer design any polymorphic locus is potentially amenable to this single-reaction method for haplotype identification.


Assuntos
Caryophyllaceae/classificação , Caryophyllaceae/genética , DNA de Cloroplastos/genética , Haplótipos , Biologia Molecular/métodos , Desnaturação de Ácido Nucleico , Filogeografia/métodos , DNA de Cloroplastos/química , DNA de Plantas/química , DNA de Plantas/genética , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Sensibilidade e Especificidade , Análise de Sequência de DNA , Temperatura de Transição
9.
Plant J ; 50(6): 1063-78, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17488239

RESUMO

As part of a larger project to sequence the Populus genome and generate genomic resources for this emerging model tree, we constructed a physical map of the Populus genome, representing one of the few such maps of an undomesticated, highly heterozygous plant species. The physical map, consisting of 2802 contigs, was constructed from fingerprinted bacterial artificial chromosome (BAC) clones. The map represents approximately 9.4-fold coverage of the Populus genome, which has been estimated from the genome sequence assembly to be 485 +/- 10 Mb in size. BAC ends were sequenced to assist long-range assembly of whole-genome shotgun sequence scaffolds and to anchor the physical map to the genome sequence. Simple sequence repeat-based markers were derived from the end sequences and used to initiate integration of the BAC and genetic maps. A total of 2411 physical map contigs, representing 97% of all clones assigned to contigs, were aligned to the sequence assembly (JGI Populus trichocarpa, version 1.0). These alignments represent a total coverage of 384 Mb (79%) of the entire poplar sequence assembly and 295 Mb (96%) of linkage group sequence assemblies. A striking result of the physical map contig alignments to the sequence assembly was the co-localization of multiple contigs across numerous regions of the 19 linkage groups. Targeted sequencing of BAC clones and genetic analysis in a small number of representative regions showed that these co-aligning contigs represent distinct haplotypes in the heterozygous individual sequenced, and revealed the nature of these haplotype sequence differences.


Assuntos
Genoma de Planta , Mapeamento Físico do Cromossomo , Populus/genética , Cromossomos Artificiais Bacterianos , Haplótipos , Repetições Minissatélites , Polimorfismo Genético , Alinhamento de Sequência , Análise de Sequência de DNA
10.
J Plant Res ; 120(1): 17-29, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17273892

RESUMO

The manipulation of DNA is routine practice in botanical research and has made a huge impact on plant breeding, biotechnology and biodiversity evaluation. DNA is easy to extract from most plant tissues and can be stored for long periods in DNA banks. Curation methods are well developed for other botanical resources such as herbaria, seed banks and botanic gardens, but procedures for the establishment and maintenance of DNA banks have not been well documented. This paper reviews the curation of DNA banks for the characterisation and utilisation of biodiversity and provides guidelines for DNA bank management. It surveys existing DNA banks and outlines their operation. It includes a review of plant DNA collection, preservation, isolation, storage, database management and exchange procedures. We stress that DNA banks require full integration with existing collections such as botanic gardens, herbaria and seed banks, and information retrieval systems that link such facilities, bioinformatic resources and other DNA banks. They also require efficient and well-regulated sample exchange procedures. Only with appropriate curation will maximum utilisation of DNA collections be achieved.


Assuntos
Biotecnologia , Cruzamento , DNA de Plantas , Especificidade da Espécie
11.
Ann Bot ; 96(7): 1237-46, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16199484

RESUMO

BACKGROUND AND AIMS: Populations of oak (Quercus petraea and Q. robur) were investigated using morphological and molecular (AFLP) analyses to assess species distinction. The study aimed to describe species distinction in Irish oak populations and to situate this in a European context. METHODS: Populations were sampled from across the range of the island of Ireland. Leaf morphological characters were analysed through clustering and ordination methods. Putative neutral molecular markers (AFLPs) were used to analyse the molecular variation. Cluster and ordination analyses were also performed on the AFLP markers in addition to calculations of genetic diversity and F-statisitcs. KEY RESULTS: A notable divergence was uncovered between the morphological and molecular analyses. The morphological analysis clearly differentiated individuals into their respective species, whereas the molecular analysis did not. Twenty species-specific AFLP markers were observed from 123 plants in 24 populations but none of these was species-diagnostic. Principal Coordinate Analysis of the AFLP data revealed a clustering, across the first two axes, of individuals according to population rather than according to species. High F(ST) values calculated from AFLP markers also indicated population differentiation (F(ST) = 0.271). Species differentiation accounted for only 13 % of the variation in diversity compared with population differentiation, which accounted for 27 %. CONCLUSIONS: The results show that neutral molecular variation is partitioned more strongly between populations than between species. Although this could indicate that the populations of Q. petraea and Q. robur studied may not be distinct species at a molecular level, it is proposed that the difficulty in distinguishing the species in Irish oak populations using AFLP markers is due to population differentiation masking species differences. This could result from non-random mating in small, fragmented woodland populations. Hybridization and introgression between the species could also have a significant role.


Assuntos
Quercus/classificação , Análise por Conglomerados , Variação Genética , Irlanda , Técnicas de Amplificação de Ácido Nucleico , Filogenia , Folhas de Planta/anatomia & histologia , Polimorfismo de Fragmento de Restrição , Análise de Componente Principal , Quercus/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA