Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37629846

RESUMO

Corrosion inhibitors represent one of the most commonly used methods for significantly reducing the corrosion rate of metals and alloys. Adsorption inhibitors have a wide range of applications in cooling water systems, deicing solutions for aircrafts, airports and ways, etching and degreasing solutions, oil pipelines, paints and coatings and metal processing solutions. Adsorption corrosion inhibitors of metals and alloys are generally organic compounds that contain structures with heteroatoms (N, P, S, As, O) in their molecules, having lone pair electrons or π electrons in aromatic rings or multiple bonds. They enable relatively strong interactions between the metal atoms and organic molecules, resulting in a protective layer of organic molecules adsorbed at the metal-corrosive solution interface. Most molecules of active substances from drugs contain similar structures, which is why many drugs have been already tested as corrosion inhibitors. One of the major disadvantages of using drugs for this purpose is their particularly high price. To overcome this impediment, the possibility of using expired drugs as corrosion inhibitors has been investigated since 2009. The present paper is an exhaustive compilation of the scientific published papers devoted to the use of expired drugs as corrosion inhibitors in various aggressive solutions. The inhibitory efficiencies of expired drugs are presented as a function of the studied metal or alloy and the nature of the aggressive solution, as well as the concentration of the inhibitor in such a solution. Research has especially been focused on mild and carbon steel and less on stainless steel, as well as on some metals such as copper, zinc, nickel, tin and aluminum and its alloys. The experimental methods used to assess the inhibitory efficiencies of expired drugs are briefly discussed. Also, the available information on the stability of the active substances in the drugs is presented, although most authors were not concerned with this aspect. Finally, several actions are revealed that must be undertaken by researchers so that the results obtained in the study of the anticorrosive action of expired drugs can be applied at the industrial level and not remain only an academic concern.

2.
Materials (Basel) ; 16(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36837041

RESUMO

In order to modify the surface of light metals and alloys, plasma electrolytic oxidation (PEO) is a useful electrochemical technique. During the oxidation process, by applying a positive high voltage greater than the dielectric breakdown value of the oxide layer, the formation of a ceramic film onto the substrate material is enabled. The resulting surface presents hardness, chemical stability, biocompatibility, and increased corrosion wear resistance. The current study aims to investigate the corrosion resistance and tribological properties of PEO-modified coatings on titanium substrates produced by applying either direct or pulsed current in a silicate-alkaline electrolyte. In this way, a uniform TiO2 layer is formed, and subsequently, electrophoretic deposition of hydroxyapatite particles (HAP) is performed. The morpho-structural characteristics and chemical composition of the resulting coatings are investigated using scanning electron microscopy combined with energy dispersive spectroscopy analysis and X-ray diffraction. Dry sliding wear testing of the TiO2 and HAP-modified TiO2 coatings were carried out using a ball-on-disc configuration, while the corrosion resistance was electrochemically evaluated at 37 °C in a Ringer's solution. The corrosion rates of the investigated samples decreased significantly, up to two orders of magnitude, when the PEO treatment was applied, while the wear rate was 50% lower compared to the untreated titanium substrate.

3.
Materials (Basel) ; 16(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36837131

RESUMO

Cost reduction in bipolar plates in proton exchange membrane water electrolyzers has previously been attempted by substituting bulk titanium with austenitic stainless steels protected with highly conductive and corrosion-resistant coatings. However, austenitic steels are more expensive than ferritic steels due to their high nickel content. Herein we report on the corrosion resistance of two high chromium ferritic stainless steels, AISI 442 and AISI 446, as an alternative material to manufacture bipolar plates. Electrochemical corrosion tests have shown that AISI 442 and AISI 446 have similar corrosion resistance, while AISI 446 reveals more noble corrosion potential and performs better during potentiostatic stress tests. The current density obtained during polarization at 2 V versus the standard hydrogen electrode (SHE) is 3.3 mA cm-2, which is more than two times lower than on AISI 442. Additionally, surface morphology characterization demonstrates that in contrast to AISI 442, AISI 446 is not sensitive to intercrystalline or pitting corrosion. Moreover, EDX energy dispersion analysis of AISI 446 reveals no differences in the chemical composition of the surface layer compared to the base material, as a confirmation of its high corrosion resistance. The results of this work open up the perspective of replacing austenitic stainless steels with less expensive ferritic stainless steels for the production of components such as bipolar plates in proton exchange membrane water electrolyzers.

4.
Materials (Basel) ; 15(8)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35454611

RESUMO

The current work explores the potential for recycling unused or expired Midazolam (MID) drug, a benzodiazepine derivative, as an efficient corrosion inhibitor for copper in nitric acid solution. The technical advantage of recycling expired MID drug relates to the avoidance of organic inhibitor production costs and the reduction of disposal costs of the expired medication. A combination of electrochemical methods (potentiodynamic polarization and electrochemical impedance spectroscopy), weight loss, and quantum chemical calculation were used to assess the inhibition mechanism and efficiency of MID. It was found that inhibition efficiency increases with inhibitor concentration, reaching a highest value of 92.9% for a concentration of 10-4 M MID. MID was classified as a mixed-type inhibitor, showing a preferential cathodic suppression mechanism. The obtained values of -45.89 kJ mol-1 for the standard free energy of adsorption indicate that the inhibition mechanism is based on chemisorption of MID molecules on the copper surface, which obeys the Langmuir isotherm. Surface analysis using scanning electronic microscopy revealed that MID offers high protection against corrosion during both immersion and polarization tests. Molecular modelling and quantum chemical calculations indicated chemical interactions between MID molecules and the copper surface, as well as electrostatic interactions. The results obtained using the different techniques were in good agreement and highlight the effectiveness of MID in the corrosion inhibition of copper.

5.
Materials (Basel) ; 15(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35268859

RESUMO

For proton exchange membrane water electrolysis (PEMWE) to become competitive, the cost of stack components, such as bipolar plates (BPP), needs to be reduced. This can be achieved by using coated low-cost materials, such as copper as alternative to titanium. Herein we report on highly corrosion-resistant copper BPP coated with niobium. All investigated samples showed excellent corrosion resistance properties, with corrosion currents lower than 0.1 µA cm-2 in a simulated PEM electrolyzer environment at two different pH values. The physico-chemical properties of the Nb coatings are thoroughly characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). A 30 µm thick Nb coating fully protects the Cu against corrosion due to the formation of a passive oxide layer on its surface, predominantly composed of Nb2O5. The thickness of the passive oxide layer determined by both EIS and XPS is in the range of 10 nm. The results reported here demonstrate the effectiveness of Nb for protecting Cu against corrosion, opening the possibility to use it for the manufacturing of BPP for PEMWE. The latter was confirmed by its successful implementation in a single cell PEMWE based on hydraulic compression technology.

6.
Materials (Basel) ; 15(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35009219

RESUMO

Platinum-based materials are widely known as the most utilized and advanced catalysts for hydrogen evolution reaction. For this reason, several studies have reported alternative methods of incorporating this metal into more economical electrodes with a carbon-based support material. Herein, we report on the performance of pencil graphite electrodes decorated with electrochemically deposited platinum nanoparticles as efficient electrocatalysts for hydrogen evolution reaction. The electrodeposition of platinum was performed via pulsed current electrodeposition and the effect of current density on the electrocatalytic activity was investigated. The obtained electrodes were characterized using cyclic voltammetry, while the electrocatalytic activity was assessed through linear sweep voltammetry. Field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy were utilised to gain an insight into surface morphology and chemical analysis of platinum nanoparticles. The best performing electrocatalyst, at both low and high current densities, was characterized by the highest exchange current density of 1.98 mA cm-2 and an ultralow overpotential of 43 mV at a current density of 10 mA cm-2. The results show that, at low current densities, performances closest to that of platinum can be achieved even with an ultralow loading of 50 µg cm-2 Pt.

7.
J Phys Chem B ; 116(14): 4377-85, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22409155

RESUMO

The electrochemical doping of emeraldine salt and emeraldine bases with different weight average molecular weights was studied by in situ Fourier transform infrared (FTIR) spectroelectrochemistry using attenuated total reflection (ATR) technique. The formation and stabilization of charge carriers in polyaniline during p-doping was followed in dependence of the chain branching. The potential dependence of the IR bands during the oxidation of the polymer clearly demonstrates the formation of the different charged polymer structures (π-dimers, polarons, and bipolarons). It is shown that IR bands usually attributed to a semiquinoid polaron lattice correspond in fact to doubly charged species, π-dimers, which are face-to-face complexes of two polarons. Bands corresponding exclusively to polarons have been identified at 1266, 1033, and 1010 cm(-1), suggesting that polarons are predominantly stabilized on the linear segments near the polymer branches by phenazine.

8.
Phys Chem Chem Phys ; 13(8): 3411-20, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21210025

RESUMO

The structure and stabilization of charged states during p-doping of polyaniline (PANI) were studied by in situ ATR-FTIR spectroelectrochemistry. The role of phenazine-like units in several copolymers of aniline and a phenazine derivative (3,7-diamino-5-phenylphenazinium chloride, phenosafranine) was investigated by spectroelectrochemistry. PANI and three copolymers with different aniline to phenosafranine ratio were electrochemically prepared. FTIR spectra of as-prepared polymers as well as in situ FTIR spectra during the oxidation of the polymers give evidence of the presence of phenazine-like units in the structure of electrochemically prepared PANI, as shown by vibrations of the phenazine rings. New bands corresponding to the in-plane and out-of-plane C-H vibration of 1,2,4-trisubstituted benzene nuclei in the phenazine skeleton are found at 1033, 957, 880, 766 and 681 cm(-1). The potential dependence of IR bands observed during oxidation of the polymers was compared to that of the ESR intensity and the absorption data and points to the diamagnetic species like π-dimers formed at higher oxidation level of PANI. This charged state is shown to be fixed at the link of the phenazine-like units with the linear segments of PANI.

9.
Phys Chem Chem Phys ; 11(30): 6505-13, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19809683

RESUMO

The electrochemical oxidation of the chemically prepared polymer poly[2-(3-thienyl)ethyl acetate] (PTEtAc), its partially hydrolyzed derivative PTEtAcOH and the fully hydrolyzed compound poly[2-(3-thienyl)ethanol] (PTEtOH) was studied by in situ electron spin resonance (ESR)/UV-Vis-NIR spectroelectrochemistry. The spectroelectrochemical response of these films on ITO substrates was analyzed with respect to the influence of the functionalized alkyl side chain on polymer doping. The simultaneous use of both electron spin resonance and UV-Vis-NIR spectroscopy allows the analysis of the nature, extent and stability of the charge carriers electrogenerated during p-doping. It was found that PTEtAc has a higher capacity for charged species due to the flexibility of the longer side chains making the redox states more stable at different doping levels. At low doping levels the charged states are dominated by polaronic species while at high doping levels bipolarons and diamagnetic polaron pairs are formed. The presence of the OH groups in the polymer side chains of the hydrolyzed derivatives favors hydrogen bonds. These interactions by hydrogen bonding fix the conjugated chains thus making a charge-discharge reaction more difficult. At high doping levels the hydrolyzed polymers favor the formation of polaron pairs.

10.
J Phys Chem B ; 113(8): 2310-6, 2009 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-19191716

RESUMO

A combined spectroelectrochemical study by ESR/UV-vis-NIR as well as FTIR spectroscopy on the influence of the copolymer composition on the stabilization of charges upon electrochemical p-doping is presented. As compared to the parent homopolymers 3-hexylthiophene (3-HeTh) and 3-methylthiophene (3-MeTh) which seems to be irregular, FTIR studies of the copolymer of both monomers (copMeHeTh) point to a regioregular structure. The in situ ESR and UV-vis-NIR spectroelectrochemistry at higher doping levels of the polymeric materials proves bipolarons and polaron pairs as stable charged states in poly(3-hexylthiophene) as well as the copolymer copMeHeTh. During the p-doping of poly(3-methylthiophene) bipolarons are the dominating species at higher doping levels. It is demonstrated that only the simultaneous use of both the ESR and the UV-vis-NIR spectroscopy enables the differentiation of polarons (paramagnetic) and polaron pairs (diamagnetic) in a conducting polymer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA