Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39149393

RESUMO

FtsH, a AAA protease, associates with HflK/C subunits to form a megadalton complex that spans the inner membrane and extends into the periplasm of E. coli. How this complex and homologous assemblies in eukaryotic organelles recruit, extract, and degrade membrane-embedded substrates is unclear. Following overproduction of protein components, recent cryo-EM structures reveal symmetric HflK/C cages surrounding FtsH in a manner proposed to inhibit degradation of membrane-embedded substrates. Here, we present structures of native complexes in which HflK/C instead forms an asymmetric nautilus-like assembly with an entryway for membrane-embedded substrates to reach and be engaged by FtsH. Consistent with this nautilus-like structure, proteomic assays suggest that HflK/C enhances FtsH degradation of certain membrane-embedded substrates. The membrane curvature in our FtsH•HflK/C complexes is opposite that of surrounding membrane regions, a property that correlates with lipid-scramblase activity and possibly with FtsH's function in the degradation of membrane-embedded proteins.

2.
ACS Appl Mater Interfaces ; 16(26): 32971-32982, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885044

RESUMO

We report herein the synthesis of three detergents bearing a perfluorinated cyclohexyl group connected through a short, hydrogenated spacer (i.e., propyl, butyl, or pentyl) to a ß-maltoside polar head that are, respectively, called FCymal-3, FCymal-4, and FCymal-5. Increasing the length of the spacer decreased the critical micellar concentration (CMC), as demonstrated by surface tension (SFT) and isothermal titration calorimetry (ITC), from 5 mM for FCymal-3 to 0.7 mM for FCymal-5. The morphology of the micelles was studied by dynamic light scattering (DLS), analytical ultracentrifugation (AUC), and small-angle X-ray scattering (SAXS), indicating heterogeneous rod-like shapes. While micelles of FCymal-3 and -4 have similar hydrodynamic diameters of ∼10 nm, those of FCymal-5 were twice as large. We also investigated the ability of the detergents to solubilize lipid membranes made of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC). Molecular modeling indicated that the FCymal detergents generate disorder in lipid bilayers, with FCymal-3 being inserted more deeply into bilayers than FCymal-4 and -5. This was experimentally confirmed using POPC vesicles that were completely solubilized within 2 h with FCymal-3, whereas FCymal-5 required >8 h. A similar trend was noticed for the direct extraction of membrane proteins from E. coli membranes, with FCymal-3 being more potent than FCymal-5. An opposite trend was observed in terms of stabilization of the two model membrane proteins bacteriorhodopsin (bR) and SpNOX. In all three FCymal detergents, bR was stable for at least 2 months with no signs of aggregation. However, while the structural integrity of bR was fully preserved in FCymal-4 and -5, minor bleaching was observed in FCymal-3. Similarly, SpNOX exhibited the least activity in FCymal-3 and the highest activity in FCymal-5. By combining solubilizing and stabilizing potency, FCymal detergents push forward our expectations of the usefulness of fluorinated detergents for handling and investigating membrane proteins.


Assuntos
Detergentes , Interações Hidrofóbicas e Hidrofílicas , Micelas , Detergentes/química , Halogenação , Escherichia coli/efeitos dos fármacos , Fosfatidilcolinas/química , Bicamadas Lipídicas/química , Bacteriorodopsinas/química
3.
Trends Biochem Sci ; 49(4): 333-345, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355393

RESUMO

Plasma membranes utilize free energy to maintain highly asymmetric, non-equilibrium distributions of lipids and proteins between their two leaflets. In this review we discuss recent progress in quantitative research enabled by using compositionally controlled asymmetric model membranes. Both experimental and computational studies have shed light on the nuanced mechanisms that govern the structural and dynamic coupling between compositionally distinct bilayer leaflets. This coupling can increase the membrane bending rigidity and induce order - or lipid domains - across the membrane. Furthermore, emerging evidence indicates that integral membrane proteins not only respond to asymmetric lipid distributions but also exhibit intriguing asymmetric properties themselves. We propose strategies to advance experimental research, aiming for a deeper, quantitative understanding of membrane asymmetry, which carries profound implications for cellular physiology.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana , Bicamadas Lipídicas/química , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo
4.
Chemistry ; 30(13): e202302758, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38010268

RESUMO

The interactions of glycosaminoglycans (GAG) with proteins of the extracellular matrix govern and regulate complex physiological functions including cellular growth, immune response, and inflammation. Repetitive presentation of GAG binding motifs, as found in native proteoglycans, might enhance GAG-protein binding through multivalent interactions. Here, we report the chemical synthesis of dendritic GAG oligomers constructed of nonasulfated hyaluronan tetrasaccharides for investigating the binding of the protein chemokine interleukin 8 (IL-8) to artificial, well-defined proteoglycan architectures. Binding of mutant monomeric and native dimerizable IL-8 was investigated by NMR spectroscopy and isothermal titration calorimetry. Dendritic oligomerization of GAG increased the binding affinity of both monomeric and dimeric IL-8. Monomeric IL-8 bound to monomeric and dimeric GAG with KD values of 7.3 and 0.108 µM, respectively. The effect was less pronounced for dimerizable wild-type IL-8, for which GAG dimerization improved the affinity from 34 to 5 nM. Binding of dimeric IL-8 to oligomeric GAG was limited by steric crowding effects, strongly reducing the affinity of subsequent binding events. In conclusion, the strongest effect of GAG oligomerization was the amplified binding of IL-8 monomers, which might concentrate monomeric protein in the extracellular matrix and thus promote protein dimerization under physiological conditions.


Assuntos
Glicosaminoglicanos , Interleucina-8 , Glicosaminoglicanos/química , Dimerização , Interleucina-8/química , Interleucina-8/metabolismo , Proteoglicanas , Ligação Proteica
5.
Angew Chem Int Ed Engl ; 63(9): e202317675, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38127455

RESUMO

Increasingly, retinal pathologies are being treated with virus-mediated gene therapies. To be able to target viral transgene expression specifically to the pathological regions of the retina with light, we established an in vivo photoactivated gene expression paradigm for retinal tissue. Based on the inducible Cre/lox system, we discovered that ethinylestradiol is a suitable alternative to Tamoxifen as ethinylestradiol is more amenable to modification with photosensitive protecting compounds, i.e., "caging." Identification of ethinylestradiol as a ligand for the mutated human estradiol receptor was supported by in silico binding studies showing the reduced binding of caged ethinylestradiol. Caged ethinylestradiol was injected into the eyes of double transgenic GFAP-CreERT2 mice with a Cre-dependent tdTomato reporter transgene followed by irradiation with light of 450 nm. Photoactivation significantly increased retinal tdTomato expression compared to controls. We thus demonstrated a first step towards the development of a targeted, light-mediated gene therapy for the eyes.


Assuntos
Integrases , Proteína Vermelha Fluorescente , Tamoxifeno , Camundongos , Animais , Humanos , Integrases/genética , Integrases/metabolismo , Camundongos Transgênicos , Transgenes , Tamoxifeno/farmacologia , Terapia Genética
6.
Microlife ; 4: uqad028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441524

RESUMO

Studies of protein-protein interactions in membranes are very important to fully understand the biological function of a cell. The extraction of proteins from the native membrane environment is a critical step in the preparation of membrane proteins that might affect the stability of protein complexes. In this work, we used the amphiphilic diisobutylene/maleic acid copolymer to extract the membrane proteome of the opportunistic pathogen Pseudomonas aeruginosa, thereby creating a soluble membrane-protein library within a native-like lipid-bilayer environment. Size fractionation of nanodisc-embedded proteins and subsequent mass spectrometry enabled the identification of 3358 proteins. The native membrane-protein library showed a very good overall coverage compared to previous proteome data. The pattern of size fractionation indicated that protein complexes were preserved in the library. More than 20 previously described complexes, e.g. the SecYEG and Pili complexes, were identified and analyzed for coelution. Although the mass-spectrometric dataset alone did not reveal new protein complexes, combining pulldown assays with mass spectrometry was successful in identifying new protein interactions in the native membrane-protein library. Thus, we identified several candidate proteins for interactions with the membrane phosphodiesterase NbdA, a member of the c-di-GMP network. We confirmed the candidate proteins CzcR, PA4200, SadC, and PilB as novel interaction partners of NbdA using the bacterial adenylate cyclase two-hybrid assay. Taken together, this work demonstrates the usefulness of the native membrane-protein library of P. aeruginosa for the investigation of protein interactions and membrane-protein complexes. Data are available via ProteomeXchange with identifiers PXD039702 and PXD039700.

7.
PNAS Nexus ; 2(5): pgad126, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37143864

RESUMO

The activity of integral membrane proteins is tightly coupled to the properties of the surrounding lipid matrix. In particular, transbilayer asymmetry, a hallmark of all plasma membranes, might be exploited to control membrane-protein activity. Here, we hypothesized that the membrane-embedded enzyme outer membrane phospholipase A (OmpLA) is susceptible to the lateral pressure differences that build up between such asymmetric membrane leaflets. Upon reconstituting OmpLA into synthetic, chemically well-defined phospholipid bilayers exhibiting different lateral pressure profiles, we indeed observed a substantial decrease in the enzyme's hydrolytic activity with increasing membrane asymmetry. No such effects were observed in symmetric mixtures of the same lipids. To quantitatively rationalize how the differential stress in asymmetric lipid bilayers inhibits OmpLA, we developed a simple allosteric model within the lateral pressure framework. Thus, we find that membrane asymmetry can serve as the dominant factor in controlling membrane-protein activity, even in the absence of specific, chemical cues or other physical membrane determinants such as hydrophobic mismatch.

8.
Biol Chem ; 404(7): 703-713, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36921292

RESUMO

Polymer-encapsulated nanodiscs enable membrane proteins to be investigated within a native-like lipid-bilayer environment. Unlike other bilayer-based membrane mimetics, these nanodiscs are equilibrium structures that permit lipid exchange on experimentally relevant timescales. Therefore, examining the kinetics and mechanisms of lipid exchange is of great interest. Since the high charge densities of existing anionic polymers can interfere with protein-protein and protein-lipid interactions as well as charge-sensitive analysis techniques, electroneutral nanodisc-forming polymers have been recently introduced. However, it has remained unclear how the electroneutrality of these polymers affects the lipid-exchange behavior of the nanodiscs. Here, we use time-resolved Förster resonance energy transfer to study the kinetics and the mechanisms of lipid exchange among nanodiscs formed by the electroneutral polymer Sulfo-DIBMA. We also examine the role of coulombic repulsion and specific counterion association in lipid exchange. Our results show that Sulfo-DIBMA nanodiscs exchange lipids on a similar timescale as DIBMA nanodiscs. In contrast with nanodiscs made from polyanionic DIBMA, however, the presence of mono- and divalent cations does not influence lipid exchange among Sulfo-DIBMA nanodiscs, as expected from their electroneutrality. The robustness of Sulfo-DIBMA nanodiscs against varying ion concentrations opens new possibilities for investigating charge-sensitive processes involving membrane proteins.


Assuntos
Maleatos , Nanoestruturas , Maleatos/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Polímeros/química , Nanoestruturas/química
9.
Biophys Chem ; 296: 107002, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921495

RESUMO

Detergents are valuable tools to extract membrane proteins for biophysical, biochemical, and structural scrutiny. The detergent-driven solubilization of bilayers made from a single lipid species is commonly described in terms of pseudo-phase diagrams and a three-stage model accounting for three ranges comprising (i) intact vesicles, (ii) vesicle/micelle co-existence, or (iii) mixed micelles. Moreover, the pseudo-phase boundaries thus determined can often be quantitatively rationalized in terms of the molecular shapes of the lipid and the detergent used. Yet, it has remained unclear to what extent this approach can be applied to multi-component lipid membranes that more closely mimic the compositional complexity of cellular membranes. Here, we studied how lipid mixtures composed of palmitoyl oleoyl phosphatidylethanolamine (POPE), palmitoyl oleoyl phosphatidylglycerol (POPG), and tetraoleoyl cardiolipin (TOCL) are solubilized by the commonly used zwitterionic detergent lauryldimethylamine N-oxide using isothermal titration calorimetry. While phase diagrams of the diverse lipid mixtures showed the typical ranges of the three-stage model, we found that POPG-rich POPE/POPG bilayers are more difficult to solubilize than POPG-poor POPE/POPG bilayers. In turn, POPE/POPG/TOCL bilayers became increasingly resistant to detergent with increasing TOCL content. Since POPG is nearly cylindrically shaped and TOCL adopts inverted cone-like shapes under current buffer conditions, our solubilization data do not align with shape-based arguments. Instead, additional electrostatic interactions between lipids and detergents lead to non-additive mixing behavior affecting the resilience of complex lipid bilayers against solubilization.


Assuntos
Detergentes , Bicamadas Lipídicas , Detergentes/química , Bicamadas Lipídicas/química , Membrana Celular/metabolismo , Cardiolipinas , Calorimetria , Micelas
10.
Langmuir ; 39(10): 3569-3579, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36854196

RESUMO

Different amphiphilic co-polymers have been introduced to produce polymer-lipid particles with nanodisc structure composed of an inner lipid bilayer and polymer chains self-assembled as an outer belt. These particles can be used to stabilize membrane proteins in solution and enable their characterization by means of biophysical methods, including small-angle X-ray scattering (SAXS). Some of these co-polymers have also been used to directly extract membrane proteins together with their associated lipids from native membranes. Styrene/maleic acid and diisobutylene/maleic acid are among the most commonly used co-polymers for producing polymer-lipid particles, named SMALPs and DIBMALPs, respectively. Recently, a new co-polymer, named Glyco-DIBMA, was produced by partial amidation of DIBMA with the amino sugar N-methyl-d-glucosamine. Polymer-lipid particles produced with Glyco-DIBMA, named Glyco-DIBMALPs, exhibit improved structural properties and stability compared to those of SMALPs and DIBMALPs while retaining the capability of directly extracting membrane proteins from native membranes. Here, we characterize the structure and lipid composition of Glyco-DIBMALPs produced with either 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Glyco-DIBMALPs were also prepared with mixtures of either POPC or DMPC and cholesterol at different mole fractions. We estimated the lipid content in the Glyco-DIBMALPs and determined the particle structure and morphology by SAXS. We show that the Glyco-DIBMALPs are nanodisc-like particles whose size and shape depend on the polymer/lipid ratio. This is relevant for designing nanodisc particles with a tunable diameter according to the size of the membrane protein to be incorporated. We also report that the addition of >20 mol % cholesterol strongly perturbed the formation of Glyco-DIBMALPs. Altogether, we describe a detailed characterization of the Glyco-DIBMALPs, which provides relevant inputs for future application of these particles in the biophysical investigation of membrane proteins.


Assuntos
Dimiristoilfosfatidilcolina , Bicamadas Lipídicas , Dimiristoilfosfatidilcolina/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Bicamadas Lipídicas/química , Maleatos/química , Polímeros/química , Proteínas de Membrana/química , Colesterol/química
11.
Plant Physiol ; 191(1): 125-141, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36222581

RESUMO

According to their lifestyle, plant pathogens are divided into biotrophic and necrotrophic organisms. Biotrophic pathogens exclusively nourish living host cells, whereas necrotrophic pathogens rapidly kill host cells and nourish cell walls and cell contents. To this end, the necrotrophic fungus Botrytis cinerea secretes large amounts of phytotoxic proteins and cell wall-degrading enzymes. However, the precise role of these proteins during infection is unknown. Here, we report on the identification and characterization of the previously unknown toxic protein hypersensitive response-inducing protein 1 (Hip1), which induces plant cell death. We found the adoption of a structurally conserved folded Alternaria alternata Alt a 1 protein structure to be a prerequisite for Hip1 to exert its necrosis-inducing activity in a host-specific manner. Localization and the induction of typical plant defense responses by Hip1 indicate recognition as a pathogen-associated molecular pattern at the plant plasma membrane. In contrast to other secreted toxic Botrytis proteins, the activity of Hip1 does not depend on the presence of the receptor-associated kinases BRI1-associated kinase 1 and suppressor of BIR1-1. Our results demonstrate that recognition of Hip1, even in the absence of obvious enzymatic or pore-forming activity, induces strong plant defense reactions eventually leading to plant cell death. Botrytis hip1 overexpression strains generated by CRISPR/Cas9 displayed enhanced infection, indicating the virulence-promoting potential of Hip1. Taken together, Hip1 induces a noncanonical defense response which might be a common feature of structurally conserved fungal proteins from the Alt a 1 family.


Assuntos
Botrytis , Células Vegetais , Botrytis/metabolismo , Morte Celular , Virulência , Membrana Celular , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
12.
Biochimie ; 205: 40-52, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36375632

RESUMO

We report herein the synthesis of zwitterionic sulfobetaine (SB) and dimethylamine oxide (AO) detergents whose alkyl chain is made of either a perfluorohexyl (F6H3) or a perfluoropentyl (F5H5) group linked to a hydrogenated spacer arm. In aqueous solution, the critical micellar concentrations (CMCs) measured by surface tensiometry (SFT) and isothermal titration calorimetry (ITC) were found in the millimolar range (1.3-2.4 mM). The morphologies of the aggregates were evaluated by dynamic light scattering (DLS), analytical ultracentrifugation (AUC), small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM), demonstrating that the two perfluoropentyl derivatives formed small micelles less than 10 nm in diameter, whereas the perfluorohexyl derivatives formed larger and more heterogeneous micelles. The two SB detergents were able to solubilize synthetic lipid vesicles in a few hours; by contrast, the perfluoropentyl AO induced much faster solubilization, whereas the perfluorohexyl AO did not show any solubilization. All detergents were tested for their abilities to stabilize three membrane proteins, namely, bacteriorhodopsin (bR), the Bacillus subtilis ABC transporter BmrA, and the Streptococcus pneumoniae enzyme SpNOX. The SB detergents outperformed the AO derivatives as well as their hydrogenated analogs in stabilizing these proteins. Among the four new compounds, F5H5SB combines many desirable properties for membrane-protein study, as it is a powerful yet gentle detergent.


Assuntos
Detergentes , Micelas , Detergentes/química , Proteínas de Membrana/química , Espalhamento a Baixo Ângulo , Difração de Raios X
13.
Anal Chem ; 95(2): 587-593, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36574263

RESUMO

Microfluidic diffusional sizing (MDS) is a recent and powerful method for determining the hydrodynamic sizes and interactions of biomolecules and nanoparticles. A major benefit of MDS is that it can report the size of a fluorescently labeled target even in mixtures with complex, unpurified samples. However, a limitation of MDS is that the target itself has to be purified and covalently labeled with a fluorescent dye. Such covalent labeling is not suitable for crude extracts such as native nanodiscs directly obtained from cellular membranes. In this study, we introduce fluorescent universal lipid labeling for MDS (FULL-MDS) as a sparse, noncovalent labeling method for determining particle size. We first demonstrate that the inexpensive and well-characterized fluorophore, Nile blue, spontaneously partitions into lipid nanoparticles without disrupting their structure. We then highlight the key advantage of FULL-MDS by showing that it yields robust size information on lipid nanoparticles in crude cell extracts that are not amenable to other sizing methods. Furthermore, even for synthetic nanodiscs, FULL-MDS is faster, cheaper, and simpler than existing labeling schemes.


Assuntos
Corantes Fluorescentes , Microfluídica , Microfluídica/métodos , Membrana Celular , Corantes Fluorescentes/química , Lipídeos
14.
Biomacromolecules ; 23(12): 5084-5094, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36399657

RESUMO

New technologies for purifying membrane-bound protein complexes in combination with cryo-electron microscopy (EM) have recently allowed the exploration of such complexes under near-native conditions. In particular, polymer-encapsulated nanodiscs enable the study of membrane proteins at high resolution while retaining protein-protein and protein-lipid interactions within a lipid bilayer. However, this powerful technology has not been exploited to address the important question of how endogenous─as opposed to overexpressed─membrane proteins are organized within a lipid environment. In this work, we demonstrate that biochemical enrichment protocols for native membrane-protein complexes from Chaetomium thermophilum in combination with polymer-based lipid-bilayer nanodiscs provide a substantial improvement in the quality of recovered endogenous membrane-protein complexes. Mass spectrometry results revealed ∼1123 proteins, while multiple 2D class averages and two 3D reconstructions from cryo-EM data furnished prominent structural signatures. This integrated methodological approach to enriching endogenous membrane-protein complexes provides unprecedented opportunities for a deeper understanding of eukaryotic membrane proteomes.


Assuntos
Bicamadas Lipídicas , Nanoestruturas , Bicamadas Lipídicas/química , Microscopia Crioeletrônica/métodos , Proteínas de Membrana/química , Eucariotos/metabolismo , Nanoestruturas/química , Polímeros/química
15.
Chem Asian J ; 17(24): e202200941, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36253323

RESUMO

Detergents have been major contributors to membrane-protein structural study for decades. However, membrane proteins solubilized in conventional detergents tend to aggregate or denature over time. Stability of large eukaryotic membrane proteins with complex structures tends to be particularly poor, necessitating development of novel detergents with improved properties. Here, we prepared a novel class of detergents, designated 3,4-bis(hydroxymethyl)hexane-1,6-diol-based maltosides (HDMs). When tested on three membrane proteins, including two G-protein-coupled receptors (GPCRs), the new detergents displayed significantly better behaviors compared with DDM. Moreover, the HDMs were superior or comparable to LMNG, an amphiphile widely used for GPCR structural study. An optimal balance of detergent rigidity vs. flexibility of the HDMs is likely responsible for their favorable behaviors toward membrane-protein stability. Thus, the current study not only introduces the HDMs, with significant potential for membrane-protein structural study, but also suggests a useful guideline for designing novel detergents for membrane-protein research.


Assuntos
Detergentes , Proteínas de Membrana , Detergentes/química , Proteínas de Membrana/química , Hexanos , Interações Hidrofóbicas e Hidrofílicas , Estabilidade Proteica
16.
Small ; 18(47): e2202492, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228092

RESUMO

Membrane proteins can be examined in near-native lipid-bilayer environments with the advent of polymer-encapsulated nanodiscs. These nanodiscs self-assemble directly from cellular membranes, allowing in vitro probing of membrane proteins with techniques that have previously been restricted to soluble or detergent-solubilized proteins. Often, however, the high charge densities of existing polymers obstruct bioanalytical and preparative techniques. Thus, the authors aim to fabricate electroneutral-yet water-soluble-polymer nanodiscs. By attaching a sulfobetaine group to the commercial polymers DIBMA and SMA(2:1), these polyanionic polymers are converted to the electroneutral maleimide derivatives, Sulfo-DIBMA and Sulfo-SMA(2:1). Sulfo-DIBMA and Sulfo-SMA(2:1) readily extract proteins and phospholipids from artificial and cellular membranes to form nanodiscs. Crucially, the electroneutral nanodiscs avert unspecific interactions, thereby enabling new insights into protein-lipid interactions through lab-on-a-chip detection and in vitro translation of membrane proteins. Finally, the authors create a library comprising thousands of human membrane proteins and use proteome profiling by mass spectrometry to show that protein complexes are preserved in electroneutral nanodiscs.


Assuntos
Bicamadas Lipídicas , Nanoestruturas , Humanos , Bicamadas Lipídicas/química , Polímeros/química , Maleatos/química , Proteínas de Membrana/química , Nanoestruturas/química
17.
Biomolecules ; 12(4)2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35454112

RESUMO

The development of antimicrobial agents against multidrug-resistant bacteria is an important medical challenge. Antimicrobial peptides (AMPs), human cathelicidin LL-37 and its derivative OP-145, possess a potent antimicrobial activity and were under consideration for clinical trials. In order to overcome some of the challenges to their therapeutic potential, a very promising AMP, SAAP-148 was designed. Here, we studied the mode of action of highly cationic SAAP-148 in comparison with OP-145 on membranes of Enterococcus hirae at both cellular and molecular levels using model membranes composed of major constituents of enterococcal membranes, that is, anionic phosphatidylglycerol (PG) and cardiolipin (CL). In all assays used, SAAP-148 was consistently more efficient than OP-145, but both peptides displayed pronounced time and concentration dependences in killing bacteria and performing at the membrane. At cellular level, Nile Red-staining of enterococcal membranes showed abnormalities and cell shrinkage, which is also reflected in depolarization and permeabilization of E. hirae membranes. At the molecular level, both peptides abolished the thermotropic phase transition and induced disruption of PG/CL. Interestingly, the membrane was disrupted before the peptides neutralized the negative surface charge of PG/CL. Our results demonstrate that SAAP-148, which kills bacteria at a significantly lower concentration than OP-145, shows stronger effects on membranes at the cellular and molecular levels.


Assuntos
Peptídeos Antimicrobianos , Streptococcus faecium ATCC 9790 , Antibacterianos/química , Membrana Celular/metabolismo , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana , Fosfatidilgliceróis
18.
Nanoscale ; 14(5): 1855-1867, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35040850

RESUMO

Amphiphilic copolymers that directly extract membrane proteins and lipids from cellular membranes to form nanodiscs combine the advantages of harsher membrane mimics with those of a native-like membrane environment. Among the few commercial polymers that are capable of forming nanodiscs, alternating diisobutylene/maleic acid (DIBMA) copolymers have gained considerable popularity as gentle and UV-transparent alternatives to aromatic polymers. However, their moderate hydrophobicities and high electric charge densities render all existing aliphatic copolymers rather inefficient under near-physiological conditions. Here, we introduce Glyco-DIBMA, a bioinspired glycopolymer that possesses increased hydrophobicity and reduced charge density but nevertheless retains excellent solubility in aqueous solutions. Glyco-DIBMA outperforms established aliphatic copolymers in that it solubilizes lipid vesicles of various compositions much more efficiently, thereby furnishing smaller, more narrowly distributed nanodiscs that preserve a bilayer architecture and exhibit rapid lipid exchange. We demonstrate the superior performance of Glyco-DIBMA in preparative and analytical applications by extracting a broad range of integral membrane proteins from cellular membranes and further by purifying a membrane-embedded voltage-gated K+ channel, which was fluorescently labeled and analyzed with the aid of microfluidic diffusional sizing (MDS) directly within native-like lipid-bilayer nanodiscs.


Assuntos
Bicamadas Lipídicas , Nanoestruturas , Interações Hidrofóbicas e Hidrofílicas , Maleatos , Proteínas de Membrana , Polímeros , Solubilidade
19.
Redox Biol ; 48: 102177, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34773836

RESUMO

Decreased susceptibilities of the human malaria parasite Plasmodium falciparum towards the endoperoxide antimalarial artemisinin are linked to mutations of residue C580 of PfKelch13, a homologue of the redox sensor Keap1 and other vertebrate BTB-Kelch proteins. Here, we addressed whether mutations alter the artemisinin susceptibility by modifying the redox properties of PfKelch13 or by compromising its native fold or abundance. Using selection-linked integration and the glmS ribozyme, efficient down-regulation of PfKelch13 resulted in ring-stage survival rates around 40%. While the loss of the thiol group of C469 or of the potential disulfide bond between residues C580 and C532 had no effect on the artemisinin susceptibility, the thiol group of C473 could not be replaced. Furthermore, we detected two different forms of PfKelch13 with distinct electrophoretic mobilities around 85 and 95 kDa, suggesting an unidentified post-translational modification. We also established a protocol for the production of recombinant PfKelch13 and produced an antibody against the protein. Recombinant PfKelch13 adopted alternative oligomeric states and only two of its seven cysteine residues, C469 and C473, reacted with Ellman's reagent. While common field mutations resulted in misfolded and completely insoluble recombinant PfKelch13, cysteine-to-serine replacements had no effect on the solubility except for residue C473. In summary, in contrast to residues C469, C532, and C580, the surface-exposed thiol group of residue C473 appears to be essential. However, not the redox properties but impaired folding of PfKelch13, resulting in a decreased PfKelch13 abundance, alters the artemisinin susceptibility and is the central parameter for mutant selection.

20.
Small ; 17(49): e2103603, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34674382

RESUMO

When membrane proteins are removed from their natural environment, the quality of the membrane-solubilizing agent used is critical for preserving their native structures and functions. Nanodiscs that retain a lipid-bilayer core around membrane proteins have attracted great attention because they offer a much more native-like environment than detergent micelles. Here, two small-molecule amphiphiles with diglucose headgroups and either a hydrocarbon or a fluorocarbon hydrophobic chain are shown to directly assemble lipids and membrane proteins to form native nanodiscs rather than mixed micelles. Self-assembly of nanodiscs of increasing complexity from both defined, artificial vesicles as well as complex, cellular membranes is demonstrated. A detailed investigation of bilayer integrity and membrane-protein activity in these nanodiscs reveals gentle effects on the encapsulated bilayer core. The fluorinated amphiphile appears particularly promising because its lipophobicity results in gentle, non-perturbing interactions with the nanoscale lipid bilayer. A sequential model of nanodisc self-assembly is proposed that proceeds through perforation of the original membrane followed by saturation and complete solubilization of the bilayer. On this basis, pseudophase diagrams are established for mixtures of lipids and nanodisc-forming diglucoside amphiphiles, and the latter are used for the extraction of a broad range of membrane proteins from cellular membranes.


Assuntos
Bicamadas Lipídicas , Nanoestruturas , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana , Micelas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA