RESUMO
OBJECTIVE: Athletic performance can be enhanced immediately after an isometric warm-up, a phenomenon termed post-activation performance enhancement (PAPE). While isometric warm-ups can improve lower extremity sprint and jump performance, neck-specific isometric warm-ups need development and validation for mild traumatic brain disorders and neck pain. This study examined acute effects of isometric warm-ups on neck performance and morphology. METHODS: Arm 1: Twenty-six adults (13 M:13F) completed neck performance testing before and after a 10-minute neck isometric warm-up or stationary bike (sham) between two visits. Testing included visual-motor reaction time, peak force, rate of force development, force steadiness, and force replication/proprioception measured by a 6-axis load cell. An inclinometer assessed range-of-motion. Paired t-tests and two-way ANOVA examined effects of neck/bike warm-up and interaction effects, respectively. Arm 2: 24 adults (11 M:13F) completed ultrasound scans of cervical muscles: before 20-minute rest (sham), and before/after a 5-min neck isometric warm-up. Longus colli cross-sectional area and sternocleidomastoid/upper trapezius thickness and stiffness, and cervical extensors thickness was assessed. One-way ANOVA compared morphological values at sham, before, and after warm-up. Significance was set at p < 0.05. RESULTS: Isometric neck warm-up increased rate of force development in flexion (p = 0.022), extension (p = 0.001-0.003), right lateral flexion (p = 0.004-0.032), left lateral flexion (p = 0.005-0.014), while peak force improved only in left lateral flexion (p = 0.032). Lateral flexion range-of-motion increased after neck warm-up (p = 0.003-0.026). Similarly, longus colli cross-sectional area (p = 0.016) and sternocleidomastoid thickness (p = 0.004) increased. CONCLUSIONS: Increased neck performance characteristics and morphology are likely due to PAPE effects of isometric neck warm-up. For coaches and athletes, simple isometric contractions could be added to existing warm-ups to reduce prevalence, incidence, and severity of mild traumatic brain injuries and neck pain.
Assuntos
Cervicalgia , Pescoço , Adulto , Humanos , Cervicalgia/diagnóstico por imagem , Pescoço/diagnóstico por imagem , Músculos do Pescoço/diagnóstico por imagem , Músculos do Pescoço/anatomia & histologia , Músculos do Pescoço/fisiologia , Contração Isométrica/fisiologia , UltrassonografiaRESUMO
This article explored the ways in which living with dementia brings potentials to queer the concept of "successful aging" and associated notions of being human. Regarding the progressive development of dementia, it can be assumed that people affected, no matter how hard they try, will sooner or later fail to age successfully. They increasingly become a symbol of what is called the "fourth age" and are framed as an essentialized other. Based on statements of people with dementia, it will be examined to what extent the position on the outside enables people affected to abandon societal guiding ideals and undermine hegemonic-dominant notions of aging. It is shown how they develop life-affirming ways of being-in-the-world that run counter to the idea of the rational, autonomous, consistent, active, productive, and healthy human beings.
RESUMO
In photocatalysis, especially in CO2 reduction and H2 production, the development of multicomponent nanomaterials provides great opportunities to tune many critical parameters toward increased activity. This work reports the development of tunable organic/inorganic heterojunctions comprised of cobalt oxides (Co3O4) of varying morphology and modified carbon nitride (CN), targeting on optimizing their response under UV-visible irradiation. MOF structures were used as precursors for the synthesis of Co3O4. A facile solvothermal approach allowed the development of ultrathin two-dimensional (2D) Co3O4 nanosheets (Co3O4-NS). The optimized CN and Co3O4 structures were coupled forming heterojunctions, and the content of each part was optimized. Activity was significantly improved in the nanocomposites bearing Co3O4-NS compared with the corresponding bulk Co3O4/CN composites. Transient absorption spectroscopy revealed a 100-fold increase in charge carrier lifetime on Co3O4-NS sites in the composite compared with the bare Co3O4-NS. The improved photocatalytic activity in H2 production and CO2 reduction is linked with (a) the larger interface imposed from the matching 2D structure of Co3O4-NS and the planar surface of CN, (b) improvements in charge carrier lifetime, and (c) the enhanced CO2 adsorption. The study highlights the importance of MOF structures used as precursors in forming advanced materials and the stepwise functionalization of the individual parts in nanocomposites for the development of materials with superior activity.
RESUMO
Bimetallic gold-platinum nanoparticles have been widely studied in the fields of nanoalloys, catalysis and plasmonics. Many preparation methods can lead to the formation of these bimetallic nanoparticles (NPs), and the structure and related properties of the nanoalloy often depend on the preparation method used. Here we investigate the ability of thermal dimethylformamide (DMF) reduction to prepare bimetallic gold-platinum sub-nm clusters supported on titania. We find that deposition of Pt preferentially occurs on gold. Formation of sub-nm clusters (vs. NPs) appears to be dependent on the metal concentration used: clusters can be obtained for metal loadings up to 4 wt% but 7-8 nm NPs are formed for metal loadings above 8 wt%, as shown using high resolution transmission electron microscopy (HRTEM). X-ray photoelectron spectroscopy (XPS) shows electron-rich Au and Pt components in a pure metallic form and significant platinum enrichment of the surface, which increases with increasing Pt/Au ratio and suggests the presence of Au@Pt core-shell type structures. By contrast, titania-supported bimetallic particles (typically >7 nm) obtained by sodium borohydride (NaBH4) reduction in DMF, contain Au/Pt Janus-type objects in addition to oxidized forms of Pt as evidenced by HRTEM, which is in agreement with the lower Pt surface enrichment found by XPS. Both types of supported nanostructures contain a gold-platinum interface, as shown by the chemical interface damping, i.e. gold plasmon damping by Pt, found using UV-visible spectroscopy. Evaluation of the materials for plasmon-induced continuous flow CO2 reduction with water, shows that: (1) subnanometer metallic clusters are not suitable for CO2 reduction with water, producing hydrogen from the competing water reduction instead, thereby highlighting the plasmonic nature of the reaction; (2) the highest methane production rates are obtained for the highest Pt enrichments of the surface, i.e. the core-shell-like structures achieved by the thermal DMF reduction method; (3) selectivity towards CO2 reduction vs. the competing water reduction is enhanced by loading of the plasmonic NPs, i.e. coverage of the titania semi-conductor by plasmonic NPs. Full selectivity is achieved for loadings above 6 wt%, regardless of the NPs composition and alloy structure.
RESUMO
Gold-catalyzed CO oxidation is a reaction of both practical and fundamental interest. In particular, rate-determining oxygen activation pathways have attracted a lot of attention. They have been found to depend on the surface chemistry of the catalyst support, titania providing the most active catalysts and carbon nitride leading to inactive catalysts. Here, we show that C3N4-TiO2 composites with rather similar surface chemistries can be engineered by using titania nanotubes as hard templates and by performing the polycondensation of melamine and dicyandiamide in air and in ammonia. By varying the C3N4 content from 2 to 75 wt %, the mesoporosity can be tuned from 8 to 40 nm. A systematic study of CO oxidation turnover numbers in the absence and in the presence of hydrogen over the composites loaded with well-calibrated 2-4 nm gold nanoparticles clearly shows that (1) the chemical composition of the support surface has much less impact on PROX (preferential oxidation of CO in excess hydrogen) than on dry CO oxidation, (2) NH2-terminated supports are as active as OH-terminated supports in PROX, (3) hydrogen/water-mediated CO oxidation pathways are active on C3N4-based Au catalysts, and (4) PROX activity requires a rather large porosity (40 nm), which suggests the involvement of much larger intermediates than the usually postulated peroxo-type species.
RESUMO
We reported a new strategy to enhance the sensing performances of a commercial microcantilever with optical readout in dynamic mode for the vapor detection of organophosphorus compounds (OPs). In order to increase significantly the surface area accessible to the molecules in the vapor phase, we nanostructured both sides of the microcantilever with ordered, open and vertically oriented amorphous titanium dioxide nanotubes (TiO2-NTs) in one step by an anodization method. However, due to the aggressive conditions of anodization synthesis it remains a real challenge to nanostructure both sides of the microcantilever. Consequently, we developed and optimized a protocol of synthesis to overcome these harsh conditions which can lead to the total destruction of the silicon microcantilever. Moreover, this protocol was also elaborated in order to maintain a good reflection of the laser beam on one side of the microcantilever towards the position sensitive photodiode and limit the light diffusion by the NTs film. The results related to the detection of dimethyl methylphosphonate (DMMP) showed that TiO2 and the nanostructuring on both sides of the microcantilever with NTs indeed improved the response of the sensor to vapors compared to a microcantilever nanostructured on only one side. The dimensions and morphology of NTs guaranteed the access of molecules to the surface of NTs. This approach showed promising prospects to enhance the sensing performances of microcantilevers.
RESUMO
Photocatalytic antibacterial and biofilm-preventive activity in liquid of heavy-metal-free coatings based on a phosphorus (P)- and fluorine (F)-modified TiO2 photocatalyst has been investigated. They reveal significantly higher immediate and longer-term (biofilm-preventive) inactivation capacity than a reference coating made of the commercial photocatalyst TiO2 P25 on three bacterial species differing in cell wall type and ability to resist oxidative stress (Escherichia coli, Staphylococcus epidermidis, Pseudomonas fluorescens) (up to more than 99% reduction of colonization on P/F-modified TiO2 coating compared to about 50% on P25 TiO2 coating for 10 min UV-A illumination). This results from the P- and F-induced improvement of photocatalyst properties and from the smoother surface topography, which shortens reactive oxygen species (ROS) diffusion to the outer membrane of the targeted adhered bacteria. Decrease in ROS-related impairment of cell wall, respiratory, and enzymatic activities confirms the loss of ROS throughout the bacterial cell degradation. Staphylococcus epidermidis and Pseudomonas fluorescens are less sensitive than Escherichia coli, with a probable relation to the bacterial oxygen stress defense mechanism. The coating antibacterial efficacy was highly affected by phosphate ions and the richness in dissolved oxygen of the reaction medium.
RESUMO
We report the fabrication of nanostructured microcantilevers employed as sensors for the detection of organophosphorus (OPs) vapors. These micromechanical sensors are prepared using a two-step procedure first optimized on a silicon wafer. TiO2 one-dimensional nanostructures are synthesized at a silicon surface by a solvothermal method and then grafted with bifunctional molecules having an oxime group known for its strong affinity with organophosphorus compounds. The loading of oxime molecules grafted on the different nanostructured surfaces was quantified by UV spectroscopy. It has been found that a wafer covered by vertically aligned rutile TiO2 nanorods (NRs), with an average length and width of 9.5 µm and 14.7 nm, respectively, provides an oxime function density of 360 nmol cm-2. The optimized TiO2 nanorod synthesis was successfully reproduced on the cantilevers, leading to a homogeneous and reproducible TiO2 NR film with the desired morphology. Thereafter, oxime molecules have been successfully grafted on the nanostructured cantilevers. Detection tests were performed in a dynamic mode by exposing the microcantilevers to dimethyl methylphosphonate (a model compound of toxic OPs agents) and following the shift of the resonant frequency. The nanostructure and the presence of the molecules on a TiO2 NR surface both improve the response of the sensors. A detection limit of 2.25 ppm can be reached with this type of sensor.
RESUMO
The induction of chemical processes by plasmonic systems is a rapidly growing field with potentially many strategic applications. One of them is the transformation of solar energy into chemical fuel by the association of plasmonic metal nanoparticles (M NPs) and a semi-conductor (SC). When the localized surface plasmon resonance (LSPR) and the SC absorption do not match, one limitation of these systems is the efficiency of hot electron transfer from M NPs to SC through the Schottky barrier formed at the M NP/SC interfaces. Here we show that high surface area 1 wt% Au/TiO2-UV100, prepared by adsorption of a NaBH4-protected 3 nm gold sol, readily catalyzes the photoreduction of carbon dioxide with water into methane under both solar and visible-only irradiation with a CH4vs. H2 selectivity of 63%. Tuning Au NP size and titania surface area, in particular via thermal treatments, highlights the key role of the metal dispersion and of the accessible Au-TiO2 perimeter interface on the direct SC-based solar process. The impact of Au NP density in turn provides evidence for the dual role of gold as co-catalyst and recombination sites for charge carriers. It is shown that the plasmon-induced process contributes up to 20% of the solar activity. The plasmon-based contribution is enhanced by a large Au NP size and a high degree of crystallinity of the SC support. By minimizing surface hydroxylation while retaining a relatively high surface area of 120 m2 g-1, pre-calcining TiO2-UV100 at 450 °C leads to an optimum monometallic system in terms of activity and selectivity under both solar and visible irradiation. A state-of-the-art methane selectivity of 100% is achieved in the hot electron process.
RESUMO
α, ß, γ, and δ polymorphs of 4.6-4.8 eV wide band gap Ga2O3 photocatalysts were prepared via a soft chemistry route. Their photocatalytic activity under 254 nm UV-C light in the degradation of gaseous toluene was strongly depending on the polymorph phase. α- and ß-Ga2O3 photocatalysts enabled achieving high and stable conversions of toluene with selectivities to CO2 within the 50-90% range, by contrast to conventional TiO2 photocatalysts that fully deactivate very rapidly on stream in similar operating conditions with rather no CO2 production, no matter whether UV-A or UV-C light was used. The highest performances were achieved on the high specific surface area ß-Ga2O3 photocatalyst synthesized by adding polyethylene glycol (PEG) as porogen before precipitation, with stable toluene conversion and mineralization rate into CO2 strongly overcoming those obtained on commercial ß-Ga2O3. They were attributed to favorable physicochemical properties in terms of high specific surface area, small mean crystallite size, good crystallinity, high pore volume with large size mesopore distribution and appropriate surface acidity, and to the possible existence of a double local internal field within Ga3+ units. In the degradation of hydrogen sulfide, PEG-derived ß-Ga2O3 takes advantage from its high specific surface area for storing sulfate, and thus for increasing its resistance to deactivation and the duration at total sulfur removal when compared to other ß-Ga2O3 photocatalysts. So, we illustrated the interest of using high surface area ß-Ga2O3 in environmental photocatalysis for gas-phase depollution applications.
Assuntos
Poluentes Atmosféricos/química , Gálio/análise , Sulfeto de Hidrogênio/química , Fotólise , Tolueno/química , Raios Ultravioleta , OxirreduçãoRESUMO
We report on the facile and low-temperature one-pot chemical synthesis of lightly doped Zn1-x Cu x O and hybrid Au-Zn1-x Cu x O photocatalysts with low Cu molar content (0 < x < 0.7%) using 1,3-propanediol polyol simultaneously as solvent, reducing and a stabilizing agent, without any final thermal treatment. The photocatalysts have been characterized by X-ray diffraction, N2 adsorption study, UV-vis diffuse reflectance spectroscopy, inductively coupled plasma optical emission spectroscopy, and transmission electron microscopy. The lightly doped hybrid Au-Zn1-x Cu x O photocatalysts consisted in faceted quasi-spherical large-size Au nanoparticle cores surrounded by closely packed small-size Zn1-x Cu x O nanoparticles. Taking the photocatalytic degradation of Diuron under solar light as liquid-phase test reaction, the lightly doped Au-Zn1-x Cu x O hybrid photocatalysts with optimized x = 0.09% Cu content showed strongly enhanced photocatalytic activity when compared to the bare ZnO counterpart. The observed 16-fold higher degradation rate constant resulted jointly from the light doping of ZnO with Cu to form Zn1-x Cu x O photocatalyst and further from the addition of gold nanoparticles allowing interfacial oxide-to-metal electron transfer within the hybrid Au-Zn1-x Cu x O photocatalyst.
Assuntos
Cobre/química , Oxigênio/química , Catálise , Luz , Propilenoglicóis , Prata , Difração de Raios X , ZincoRESUMO
Novel photocatalytic nanomaterials that can be used to functionalize textiles, conferring to them efficient solar-light-activated properties for the decontamination of toxic and lethal agents, are described. Textiles functionalized with one-dimensional (1D) SnS2-based nanomaterials were used for photocatalytic applications for the first time. We showed that 1D SnS2/TiO2 nanocomposites can be easily and strongly affixed onto textiles using the layer-by-layer deposition method. Ultrathin SnS2 nanosheets were associated with anatase TiO2 nanofibers to form nano-heterojunctions with a tight interface, considerably increasing the photo-oxidative activity of anatase TiO2 due to the beneficial interfacial transfer of photogenerated charges and increased oxidizing power. Moreover, it is easy to process the material on a larger scale and to regenerate these functionalized textiles. Our findings may aid the development of functionalized clothing with solar light-activated photocatalytic properties that provide a high level of protection against chemical warfare agents.
RESUMO
We report on a facile one-step soft hydrothermal process for synthesizing 1D anatase TiO2 nanofibers decorated with ultrathin SnS2 nanosheets. H-titanate nanofibers were used as preshaped Ti precursor. Under controlled conditions, the H-titanate structure was transformed into anatase maintaining the fibril morphology, while at the same time SnS2 nanosheets were grown in situ on the surface of the nanofibers. The successful formation of SnS2 nanosheets on the TiO2 nanofibers was confirmed by high-resolution TEM, and together with XPS spectroscopy, the tight interface formed between the SnS2 and the anatase TiO2 nanofibers was verified. The 1D SnS2/TiO2 hierarchical nanostructures with semiconductor heterojunction were proven to be very efficient under artificial solar irradiation in the photocatalytic degradation of gaseous diethylsulfide as simulant for live yperite chemical warfare agent as well as model substrate for malodorous organosulfide volatile organic compounds. SnS2 did not operate as a visible light sensitizer for TiO2 but rather as an oxidizing agent and charge-carrier separator. The semiconductor ratio in the heterostructure controlled the photoactivity. Samples with no or high content of SnS2 were less active than those with moderate SnS2 content. Enhanced reactivity was ascribed to an efficient separation of the photogenerated charge carriers driven by the differences in band edge positions and favored by the tight interface within the coupled heterostructure.
RESUMO
Escherichia coli abatement was studied in liquid phase under visible light in the presence of two commercial titania photocatalysts, and of Fe- and Al-doped titania samples prepared by high energy ball-milling. The two commercial titania photocatalysts, Aeroxide P25 (Evonik industries) exhibiting both rutile and anatase structures and MPT625 (Ishihara Sangyo Kaisha), a Fe-, Al-, P- and S-doped titania exhibiting only the rutile phase, are active suggesting that neither the structure nor the doping is the driving parameter. Although the MPT625 UV-visible spectrum is shifted towards the visible domain with respect to the P25 one, the effect on bacteria is not increased. On the other hand, the ball milled iron-doped P25 samples exhibit low activities in bacteria abatement under visible light due to charge recombinations unfavorable to catalysis as shown by photoluminescence measurements. While doping elements are in interstitial positions within the rutile structure in MPT625 sample, they are located at the surface in ball milled samples and in isolated octahedral units according to (57)Fe Mössbauer spectrometry. The location of doping elements at the surface is suggested to be responsible for the sample cytotoxicity observed in the dark.
Assuntos
Alumínio/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Ferro/química , Luz , Fotoquímica/métodos , Titânio/farmacologia , Catálise/efeitos dos fármacos , Catálise/efeitos da radiação , Fenômenos Químicos/efeitos dos fármacos , Fenômenos Químicos/efeitos da radiação , Cristalização , Espectroscopia Fotoeletrônica , Espectrofotometria Ultravioleta , Espectroscopia de Mossbauer , Temperatura , Difração de Raios XRESUMO
This study investigates the mechanisms of UV-A (315 to 400 nm) photocatalysis with titanium dioxide (TiO2) applied to the degradation of Escherichia coli and their effects on two key cellular components: lipids and proteins. The impact of TiO2 photocatalysis on E. coli survival was monitored by counting on agar plate and by assessing lipid peroxidation and performing proteomic analysis. We observed through malondialdehyde quantification that lipid peroxidation occurred during the photocatalytic process, and the addition of superoxide dismutase, which acts as a scavenger of the superoxide anion radical (O2·(-)), inhibited this effect by half, showing us that O2·(-) radicals participate in the photocatalytic antimicrobial effect. Qualitative analysis using two-dimensional electrophoresis allowed selection of proteins for which spot modifications were observed during the applied treatments. Two-dimensional electrophoresis highlighted that among the selected protein spots, 7 and 19 spots had already disappeared in the dark in the presence of 0.1 g/liter and 0.4 g/liter TiO2, respectively, which is accounted for by the cytotoxic effect of TiO2. Exposure to 30 min of UV-A radiation in the presence of 0.1 g/liter and 0.4 g/liter TiO2 increased the numbers of missing spots to 14 and 22, respectively. The proteins affected by photocatalytic oxidation were strongly heterogeneous in terms of location and functional category. We identified several porins, proteins implicated in stress response, in transport, and in bacterial metabolism. This study reveals the simultaneous effects of O2·(-) on lipid peroxidation and on the proteome during photocatalytic treatment and therefore contributes to a better understanding of molecular mechanisms in antibacterial photocatalytic treatment.
Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Escherichia coli/efeitos da radiação , Metabolismo dos Lipídeos , Processos Fotoquímicos , Titânio/metabolismo , Raios Ultravioleta , Contagem de Colônia Microbiana , Peroxidação de Lipídeos , Viabilidade Microbiana/efeitos da radiação , Proteoma/análise , Espécies Reativas de Oxigênio/toxicidadeRESUMO
Hydrogen sulfide (H2S) is a toxic, corrosive and malodorous compound with damaging effects even when present at a low concentration in air. Consequently, the development of efficient and environmentally friendly remediation technologies as an alternative to conventional techniques is justified for environmental reasons and public concern over human health and well-being. In the context of indoor air quality control, the use of photocatalysis over semi-conductor oxides could be a valuable alternative purification technology due to its wide-ranging effect and its easy way of implementation. The superiority of the TiO2 Hombikat UV100 photocatalyst in comparison with the Aeroxide© TiO2 P25 standard was already apparent in the UV-A photocatalytic oxidation of H2S. We report here on the first use of WO3/TiO2 UV100 photocatalysts for this reaction. Associating WO3 to TiO2 UV100 was not beneficial in terms of semiconductor coupling and of charge transfer between both phases. Even if such coupled wide band-gap oxide semi-conductor photocatalysts suffered from on-flow deactivation due to the formation of poisoning sulfates as ultimate reaction products continuously stored at the surface, by contrast, their ability to strongly lower and delay the release of SO2 to the gas phase was very positive for maintaining a weak selectivity into the unwanted SO2 by-product.
Assuntos
Poluentes Atmosféricos/química , Sulfeto de Hidrogênio/química , Óxidos/química , Titânio/química , Tungstênio/química , Poluição do Ar em Ambientes Fechados/prevenção & controle , Catálise , Oxirredução , Óxidos/efeitos da radiação , Titânio/efeitos da radiação , Tungstênio/efeitos da radiação , Raios UltravioletaRESUMO
Self-cleaning surfaces containing TiO2 nanoparticles have been postulated to efficiently remove NOx from the atmosphere. However, UV irradiation of NOx adsorbed on TiO2 also was shown to form harmful gas-phase byproducts such as HONO and N2O that may limit their depolluting potential. Ambient pressure XPS was used to study surface and gas-phase species formed during adsorption of NO2 on TiO2 and subsequent UV irradiation at λ = 365 nm. It is shown here that NO3(-), adsorbed on TiO2 as a byproduct of NO2 disproportionation, was quantitatively converted to surface NO2 and other reduced nitrogenated species under UV irradiation in the absence of moisture. When water vapor was present, a faster NO3(-) conversion occurred, leading to a net loss of surface-bound nitrogenated species. Strongly adsorbed NO3(-) in the vicinity of coadsorbed K(+) cations was stable under UV light, leading to an efficient capture of nitrogenated compounds.
RESUMO
The photocatalytic antimicrobial properties of TiO2 were studied on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa bacterial strains taken as model strains for pathogenic species mainly implied in nosocomial infections. Capillary cytometry, coupled to a double-staining method for visualizing membrane integrity as a cell viability indicator, was highlighted as a rapid, easy-to-use, and automated numeration technique for quantitative and reproducible determination of cellular viability and thus, was able to give an accurate evaluation of the bactericidal effect of UV-A photocatalysis. Cytometry also enabled the study of TiO2-bacteria interactions and aggregation in the dark as well as TiO2 cytotoxicity. Compared with the traditional agar plate cultivation method, a significatively weaker reduction in cell viability was recorded by cytometry whatever the bacteria, TiO2 concentration, and duration of the photocatalytic treatment. The mismatch between both numeration methods was attributed to: (i) the presence of mixed bacteria-TiO2 aggregates that could interfere with bacteria measurement on plates, (ii) prolonged contact of the bacteria with TiO2 during incubation, which could cause additional cytotoxic damage to the bacterial wall, and (iii) the counting of viable but non-culturable bacteria as live bacteria in cytometry, whereas they cannot grow on solid media. A more pronounced difference was observed for P. aeruginosa and S. aureus bacteria, for which 2.9 and 1.9 log10 survival reduction overestimations were measured by plate counting, respectively. Using chemiluminescence, full restoration of cell viability by controlled addition of the O2Ë(-) scavenger superoxide dismutase enzyme suggests that O2Ë(-) acts, in our conditions, as the main reactive oxygen species responsible for the photocatalytic attack towards the targeted bacteria.
Assuntos
Antibacterianos/química , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio/metabolismo , Titânio/química , Antibacterianos/farmacologia , Catálise , Citofotometria , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Corantes Fluorescentes/química , Medições Luminescentes , Nanopartículas Metálicas/toxicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos da radiação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/efeitos da radiação , Superóxido Dismutase/metabolismo , Raios UltravioletaRESUMO
INTRODUCTION: This study of photocatalytic degradation of wastewater was carried out in alveolar cell ß-SiC foam-structured photocatalytic reactors working in a recirculation mode. The immobilization of TiO2 on ß-SiC foams was efficiently obtained through a sol-gel technique in acidic conditions. DISCUSSION: In order to optimize degradation yields obtained by the foam-structured prototype reactor for the photocatalytic water treatment, the operating conditions of the photoreactor have been investigated and the efficiency of the process was evaluated by measuring the photocatalytic degradation of Diuron (3-(3,4-dichlorophenyl)-1,1-dimethyl-urea)) under UV irradiation. Kinetic studies were carried out by investigating the influence of different parameters controlling the reaction (TiO2 loading and ß-SiC foam cell size). The ageing of TiO2/ß-SiC foam photocatalytic materials and the mineralization (TOC, Cl-, NO3- and NH4+) of Diuron were investigated.