Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 293: 511-519, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151642

RESUMO

Clinical trials show an inverse relationship between the consumption of antioxidant-rich tree nuts and the development of chronic diseases. This study examined antioxidant efficacy of U.S. pecans using a modified cellular antioxidant activity (CAA) assay with comparisons to data from in vitro antioxidant assays (hydrophilic-oxygen radical absorbance capacity {H-ORACFL} and ferric reducing antioxidant power {FRAP}). Crude phenolic extracts from both raw and roasted pecans were analyzed. In the CAA assay, pecan phenolics were taken up by human colorectal adenocarcinoma (Caco-2) cells and bestowed CAA, determined by monitoring the fluorescence of 2',7'-dichlorofluorescein. Phenolics (25-100 µg/mL) demonstrated a reduction in fluorescence by 37-69% for raw and 26-68% for roasted pecans. The primary active phenolic constituents were determined by high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) to be epi(catechin) dimers and trimers. These oligomeric procyanidins, ranging in size from 560 to 840 g/mol appear to be small enough for cellular uptake, showing pecans are an effective antioxidant in biological systems, regardless of roasting.


Assuntos
Antioxidantes/química , Carya/química , Células CACO-2 , Carya/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Humanos , Nozes/química , Nozes/metabolismo , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas por Ionização por Electrospray
2.
Food Chem ; 244: 359-363, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29120793

RESUMO

In vitro assays are widely used to analyze the antioxidant potential of compounds, but they cannot accurately predict antioxidant behavior in living systems. Cell-based assays, like the cellular antioxidant activity (CAA) assay, are gaining importance as they provide a biological perspective. When the CAA assay was employed to study phenolic antioxidants using hepatocarcinoma (HepG2) cells, quercetin showed antioxidant activity in HepG2 cells; 25 and 250µM quercetin reduced fluorescence by 17.1±0.9% and 58.6±2.4%, respectively. (+)-Catechin, a phenolic antioxidant present in many foods, bestowed virtually no CAA in HepG2 cells. When Caco-2 cells were employed, more robust antioxidant activity was observed; 50µM (+)-catechin and quercetin reduced fluorescence by 54.1±1.4% and 63.6±0.9%, respectively. Based on these results, likely due to differences in active membrane transport between the cell types, the Caco-2-based CAA assay appears to be a more appropriate method for the study of certain dietary phenolics.


Assuntos
Antioxidantes/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Fenóis/farmacologia , Células CACO-2 , Catequina/farmacologia , Alimentos , Células Hep G2 , Humanos , Quercetina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA