Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Conserv Physiol ; 12(1): coae001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343721

RESUMO

The thermally dynamic nearshore Beaufort Sea, Alaska, is experiencing climate change-driven temperature increases. Measuring thermal tolerance of broad whitefish (Coregonus nasus) and saffron cod (Eleginus gracilis), both important species in the Arctic ecosystem, will enhance understanding of species-specific thermal tolerances. The objectives of this study were to determine the extent that acclimating broad whitefish and saffron cod to 5°C and 15°C changed their critical thermal maximum (CTmax) and HSP70 protein and mRNA expression in brain, muscle and liver tissues. After acclimation to 5°C and 15°C, the species were exposed to a thermal ramping rate of 3.4°C · h-1 before quantifying the CTmax and HSP70 protein and transcript concentrations. Broad whitefish and saffron cod acclimated to 15°C had a significantly higher mean CTmax (27.3°C and 25.9°C, respectively) than 5°C-acclimated fish (23.7°C and 23.2°C, respectively), which is consistent with trends in CTmax between higher and lower acclimation temperatures. There were species-specific differences in thermal tolerance with 15°C-acclimated broad whitefish having higher CTmax and HSP70 protein concentrations in liver and muscle tissues than saffron cod at both acclimation temperatures. Tissue-specific differences were quantified, with brain and muscle tissues having the highest and lowest HSP70 protein concentrations, respectively, for both species and acclimation temperatures. The differences in broad whitefish CTmax between the two acclimation temperatures could be explained with brain and liver tissues from 15°C acclimation having higher HSP70a-201 and HSP70b-201 transcript concentrations than control fish that remained in lab-acclimation conditions of 8°C. The shift in CTmax and HSP70 protein and paralogous transcripts demonstrate the physiological plasticity that both species possess in responding to two different acclimation temperatures. This response is imperative to understand as aquatic temperatures continue to elevate.

2.
Ecol Evol ; 11(16): 11491-11506, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34429935

RESUMO

Fish are critical ecologically and socioeconomically for subsistence economies in the Arctic, an ecosystem undergoing unprecedented environmental change. Our understanding of the responses of nearshore Arctic fishes to environmental change is inadequate because of limited research on the physicochemical drivers of abundance occurring at a fine scale. Here, high-frequency in situ measurements of pH, temperature, salinity, and dissolved oxygen were paired with daily fish catches in nearshore Alaskan waters of the Beaufort Sea. Due to the threat that climate change poses to high-latitude marine ecosystems, our main objective was to characterize the abiotic drivers of abundance and elucidate how nearshore fish communities may change in the future. We used generalized additive models (GAMs) to describe responses to the nearshore environment for 18 fish species. Relationships between abundance and the physicochemical environment were variable between species and reflected life history. Each abiotic covariate was significant in at least one GAM, exhibiting both nonlinear and linear associations with abundance. Temperature was the most important predictor of abundance and was significant in GAMs for 11 species. Notably, pH was a significant predictor of abundance for six species: Arctic cod (Boreogadus saida), broad whitefish (Coregonus nasus), Dolly Varden (Salvelinus malma), ninespine stickleback (Pungitius pungitius), saffron cod (Eleginus gracilis), and whitespotted greenling (Hexagrammos stelleri). Broad whitefish and whitespotted greenling abundance was positively associated with pH, while Arctic cod and saffron cod abundance was negatively associated with pH. These results may be a bellwether for future nearshore Arctic fish community change by providing a foundational characterization of the relationships between abundance and the abiotic environment, particularly in regard to pH, and demonstrate the importance of including a wider range of physicochemical habitat covariates in future research.

3.
Sci Rep ; 11(1): 13500, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188095

RESUMO

The adverse conditions of acidification on sensitive marine organisms have led to the investigation of bioremediation methods as a way to abate local acidification. This phytoremediation, by macrophytes, is expected to reduce the severity of acidification in nearshore habitats on short timescales. Characterizing the efficacy of phytoremediation can be challenging as residence time, tidal mixing, freshwater input, and a limited capacity to fully constrain the carbonate system can lead to erroneous conclusions. Here, we present in situ observations of carbonate chemistry relationships to seagrass habitats by comparing dense (DG), patchy (PG), and no grass (NG) Zostera marina pools in the high intertidal experiencing intermittent flooding. High-frequency measurements of pH, alkalinity (TA), and total-CO2 elucidate extreme diel cyclicity in all parameters. The DG pool displayed frequent decoupling between pH and aragonite saturation state (Ωarg) suggesting pH-based inferences of acidification remediation by seagrass can be misinterpreted as pH and Ωarg can be independent stressors for some bivalves. Estimates show the DG pool had an integrated ΔTA of 550 µmol kg-1 over a 12 h period, which is ~ 60% > the PG and NG pools. We conclude habitats with mixed photosynthesizers (i.e., PG pool) result in less decoupling between pH and Ωarg.

4.
Conserv Physiol ; 9(1): coab007, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833867

RESUMO

Changes in species composition and biomass of Arctic benthic communities are predicted to occur in response to environmental changes associated with oceanic warming and sea-ice loss. Such changes will likely impact ecosystem function, including flows of energy and organic material through the Arctic marine food web. Oxygen consumption rates can be used to quantify differences in metabolic demand among species and estimate the effects of shifting community structure on benthic carbon consumption. Closed-system respirometry using non-invasive oxygen optodes was conducted onboard the R/V Sikuliaq in June 2017 and 2018 on six dominant species of benthic macrofauna from the northern Bering and southern Chukchi Sea shelves, including five bivalve species (Macoma sp., Serripes groenlandicus, Astarte sp., Hiatella arctica and Nuculana pernula) and one amphipod species (Ampelisca macrocephala). Results revealed species-specific respiration rates with high metabolic demand for S. groenlandicus and A. macrocephala compared to that of the other species. For a hypothetical 0.1-g ash-free dry mass individual, the standard metabolic rate of S. groenlandicus would be 4.3 times higher than that of Astarte sp. Overall, carbon demand ranged from 8 to 475 µg C individual-1 day-1 for the species and sizes of individuals measured. The allometric scaling of respiration rate with biomass also varied among species. The scaling coefficient was similar for H. arctica, A. macrocephala and Astarte sp., while it was high for S. groenlandicus and low for Macoma sp. These results suggest that observed shifts in spatial distribution of the dominant macrofaunal taxa across this region will impact carbon demand of the benthic community. Hence, ecosystem models seeking to incorporate benthic system functionality may need to differentiate between communities that exhibit different oxygen demands.

5.
Front Neurol ; 11: 619, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849167

RESUMO

The study of effects associated with human exposure to repeated low-level blast during training or operations of select military occupational specialties (MOS) challenges medical science because acute negative effects that might follow such exposures cannot be expected to be clear or prevalent. Any gross effects from such occupational blast exposure on health or performance should be expected to have been already identified and addressed by affected military units through changes to their standard training protocols. Instead, effects, if any, should be expected to be incremental in nature and to vary among individuals of different susceptibilities and exposure histories. Despite the challenge, occupational blast-associated effects in humans are emerging in ongoing research. The purpose of the present study was to examine medical records for evidence of blast-associated effects that may have clinical significance in current standard of care. We hypothesized that populations exposed to blast by virtue of their military occupation would have poorer global medical outcomes than cohorts less likely to have been occupationally exposed. Records from a population of 50,254 service members in MOSs with a high likelihood of occupational blast exposure were compared to records from a matched cohort of 50,254 service members in MOSs with a lower likelihood of occupational blast exposure. These two groups were compared in hospitalizations, outpatient visits, pharmacy, and disability ratings. The clearest finding was higher risk among blast-exposed MOSs for ambulatory encounters for tinnitus, with adjusted risk ratios of 1.19 (CI 1.03-1.37), 1.21 (CI 1.16-1.26), and 1.31 (CI 1.18-1.45) across career time points. Other hypothesized effects (i.e., neurological outcomes) were smaller and were associated with acute exposure. This study documents that service members in occupations that likely include repeated exposure to blast are at some increased risk for neurosensory conditions that present in medical evaluations. Other hypothesized risks from occupational exposure may manifest as symptomology not visible in the medical system or current standard of care. Separate studies, observational and epidemiological, are underway to evaluate further the potential for occupational risk, but the evidence presented here may indicate near-term opportunities to guide efforts to reduce neurosensory risk among exposed service members.

7.
Conserv Physiol ; 2(1): cou045, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27293666

RESUMO

The characterization of physiological phenotypes that may play a part in the establishment of non-native species can broaden our understanding about the ecology of species invasion. Here, an assessment was carried out by comparing the responses of invasive and native species to thermal stress. The goal was to identify physiological patterns that facilitate invasion success and to investigate whether these traits are widespread among invasive ectotherms. Four hypotheses were generated and tested using a review of the literature to determine whether they could be supported across taxonomically diverse invasive organisms. The four hypotheses are as follows: (i) broad geographical temperature tolerances (thermal width) confer a higher upper thermal tolerance threshold for invasive rather than native species; (ii) the upper thermal extreme experienced in nature is more highly correlated with upper thermal tolerance threshold for invasive vs. native animals; (iii) protein chaperone expression-a cellular mechanism that underlies an organism's thermal tolerance threshold-is greater in invasive organisms than in native ones; and (iv) acclimation to higher temperatures can promote a greater range of thermal tolerance for invasive compared with native species. Each hypothesis was supported by a meta-analysis of the invasive/thermal physiology literature, providing further evidence that physiology plays a substantial role in the establishment of invasive ectotherms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA