Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
STAR Protoc ; 4(2): 102162, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36920914

RESUMO

GlyCompareCT is a portable command-line tool to facilitate downstream glycomic data analyses, by addressing data inherent sparsity and non-independence. Inputting glycan abundances, users can run GlyCompareCT with one line of code to obtain the abundances of a minimal substructure set, named glycomotif, thereby quantifying hidden biosynthetic relationships between measured glycans. Optional parameters tuning and annotation are supported for personal preference. For complete details on the use and execution of this protocol, please refer to Bao et al. (2021).1.

2.
STAR Protoc ; 4(1): 102069, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853701

RESUMO

Understanding cellular metabolism is important across biotechnology and biomedical research and has critical implications in a broad range of normal and pathological conditions. Here, we introduce the user-friendly web-based platform ImmCellFie, which allows the comprehensive analysis of metabolic functions inferred from transcriptomic or proteomic data. We explain how to set up a run using publicly available omics data and how to visualize the results. The ImmCellFie algorithm pushes beyond conventional statistical enrichment and incorporates complex biological mechanisms to quantify cell activity. For complete details on the use and execution of this protocol, please refer to Richelle et al. (2021).1.


Assuntos
Biologia Computacional , Proteômica , Proteômica/métodos , Biologia Computacional/métodos , Algoritmos , Internet
3.
Glycobiology ; 32(12): 1101-1115, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36048714

RESUMO

Vertebrate sialic acids (Sias) display much diversity in modifications, linkages, and underlying glycans. Slide microarrays allow high-throughput explorations of sialoglycan-protein interactions. A microarray presenting ~150 structurally defined sialyltrisaccharides with various Sias linkages and modifications still poses challenges in planning, data sorting, visualization, and analysis. To address these issues, we devised a simple 9-digit code for sialyltrisaccharides with terminal Sias and underlying two monosaccharides assigned from the nonreducing end, with 3 digits assigning a monosaccharide, its modifications, and linkage. Calculations based on the encoding system reveal >113,000 likely linear sialyltrisaccharides in nature. Notably, a biantennary N-glycan with 2 terminal sialyltrisaccharides could thus have >1010 potential combinations and a triantennary N-glycan with 3 terminal sequences, >1015 potential combinations. While all possibilities likely do not exist in nature, sialoglycans encode enormous diversity. While glycomic approaches are used to probe such diverse sialomes, naturally occurring bacterial AB5 toxin B subunits are simpler tools to track the dynamic sialome in biological systems. Sialoglycan microarray was utilized to compare sialoglycan-recognizing bacterial toxin B subunits. Unlike the poor correlation between B subunits and species phylogeny, there is stronger correlation with Sia-epitope preferences. Further supporting this pattern, we report a B subunit (YenB) from Yersinia enterocolitica (broad host range) recognizing almost all sialoglycans in the microarray, including 4-O-acetylated-Sias not recognized by a Yersinia pestis orthologue (YpeB). Differential Sia-binding patterns were also observed with phylogenetically related B subunits from Escherichia coli (SubB), Salmonella Typhi (PltB), Salmonella Typhimurium (ArtB), extra-intestinal E.coli (EcPltB), Vibrio cholera (CtxB), and cholera family homologue of E. coli (EcxB).


Assuntos
Toxinas Bacterianas , Escherichia coli , Salmonella typhi/química , Ácidos Siálicos , Toxinas Bacterianas/química , Polissacarídeos , Toxina da Cólera
4.
Nat Commun ; 13(1): 2455, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508452

RESUMO

Human Milk Oligosaccharides (HMOs) are abundant carbohydrates fundamental to infant health and development. Although these oligosaccharides were discovered more than half a century ago, their biosynthesis in the mammary gland remains largely uncharacterized. Here, we use a systems biology framework that integrates glycan and RNA expression data to construct an HMO biosynthetic network and predict glycosyltransferases involved. To accomplish this, we construct models describing the most likely pathways for the synthesis of the oligosaccharides accounting for >95% of the HMO content in human milk. Through our models, we propose candidate genes for elongation, branching, fucosylation, and sialylation of HMOs. Our model aggregation approach recovers 2 of 2 previously known gene-enzyme relations and 2 of 3 empirically confirmed gene-enzyme relations. The top genes we propose for the remaining 5 linkage reactions are consistent with previously published literature. These results provide the molecular basis of HMO biosynthesis necessary to guide progress in HMO research and application with the goal of understanding and improving infant health and development.


Assuntos
Leite Humano , Oligossacarídeos , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Humanos , Lactente , Leite Humano/metabolismo , Oligossacarídeos/metabolismo
5.
Metab Eng ; 70: 155-165, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35038554

RESUMO

Heparin is an essential anticoagulant used for treating and preventing thrombosis. However, the complexity of heparin has hindered the development of a recombinant source, making its supply dependent on a vulnerable animal population. In nature, heparin is produced exclusively in mast cells, which are not suitable for commercial production, but mastocytoma cells are readily grown in culture and make heparan sulfate, a closely related glycosaminoglycan that lacks anticoagulant activity. Using gene expression profiling of mast cells as a guide, a multiplex genome engineering strategy was devised to produce heparan sulfate with high anticoagulant potency and to eliminate contaminating chondroitin sulfate from mastocytoma cells. The heparan sulfate purified from engineered cells grown in chemically defined medium has anticoagulant potency that exceeds porcine-derived heparin and confers anticoagulant activity to the blood of healthy mice. This work demonstrates the feasibility of producing recombinant heparin from mammalian cell culture as an alternative to animal sources.


Assuntos
Edição de Genes , Heparina , Animais , Anticoagulantes , Heparitina Sulfato/metabolismo , Camundongos , Suínos
6.
Cell Rep Methods ; 1(3)2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34761247

RESUMO

Omics experiments are ubiquitous in biological studies, leading to a deluge of data. However, it is still challenging to connect changes in these data to changes in cell functions because of complex interdependencies between genes, proteins, and metabolites. Here, we present a framework allowing researchers to infer how metabolic functions change on the basis of omics data. To enable this, we curated and standardized lists of metabolic tasks that mammalian cells can accomplish. Genome-scale metabolic networks were used to define gene sets associated with each metabolic task. We further developed a framework to overlay omics data on these sets and predict pathway usage for each metabolic task. We demonstrated how this approach can be used to quantify metabolic functions of diverse biological samples from the single cell to whole tissues and organs by using multiple transcriptomic datasets. To facilitate its adoption, we integrated the approach into GenePattern (www.genepattern.org-CellFie).


Assuntos
Genoma , Redes e Vias Metabólicas , Animais , Redes e Vias Metabólicas/genética , Fenômenos Fisiológicos Celulares , Perfilação da Expressão Gênica , Transcriptoma/genética , Mamíferos/genética
7.
Nat Commun ; 12(1): 4988, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404781

RESUMO

Glycans are fundamental cellular building blocks, involved in many organismal functions. Advances in glycomics are elucidating the essential roles of glycans. Still, it remains challenging to properly analyze large glycomics datasets, since the abundance of each glycan is dependent on many other glycans that share many intermediate biosynthetic steps. Furthermore, the overlap of measured glycans can be low across samples. We address these challenges with GlyCompare, a glycomic data analysis approach that accounts for shared biosynthetic steps for all measured glycans to correct for sparsity and non-independence in glycomics, which enables direct comparison of different glycoprofiles and increases statistical power. Using GlyCompare, we study diverse N-glycan profiles from glycoengineered erythropoietin. We obtain biologically meaningful clustering of mutant cell glycoprofiles and identify knockout-specific effects of fucosyltransferase mutants on tetra-antennary structures. We further analyze human milk oligosaccharide profiles and find mother's fucosyltransferase-dependent secretor-status indirectly impact the sialylation. Finally, we apply our method on mucin-type O-glycans, gangliosides, and site-specific compositional glycosylation data to reveal tissues and disease-specific glycan presentations. Our substructure-oriented approach will enable researchers to take full advantage of the growing power and size of glycomics data.


Assuntos
Vias Biossintéticas , Glicômica , Polissacarídeos/biossíntese , Transporte Biológico , Vias Biossintéticas/genética , Análise por Conglomerados , Análise de Dados , Eritropoetina/metabolismo , Fucosiltransferases/genética , Gangliosídeos , Técnicas de Inativação de Genes , Glicosilação , Humanos , Mucinas
8.
J Biomed Sci ; 28(1): 50, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158025

RESUMO

Cancer immunotherapy has revolutionized treatment and led to an unprecedented wave of immuno-oncology research during the past two decades. In 2018, two pioneer immunotherapy innovators, Tasuku Honjo and James P. Allison, were awarded the Nobel Prize for their landmark cancer immunotherapy work regarding "cancer therapy by inhibition of negative immune regulation" -CTLA4 and PD-1 immune checkpoints. However, the challenge in the coming decade is to develop cancer immunotherapies that can more consistently treat various patients and cancer types. Overcoming this challenge requires a systemic understanding of the underlying interactions between immune cells, tumor cells, and immunotherapeutics. The role of aberrant glycosylation in this process, and how it influences tumor immunity and immunotherapy is beginning to emerge. Herein, we review current knowledge of miRNA-mediated regulatory mechanisms of glycosylation machinery, and how these carbohydrate moieties impact immune cell and tumor cell interactions. We discuss these insights in the context of clinical findings and provide an outlook on modulating the regulation of glycosylation to offer new therapeutic opportunities. Finally, in the coming age of systems glycobiology, we highlight how emerging technologies in systems glycobiology are enabling deeper insights into cancer immuno-oncology, helping identify novel drug targets and key biomarkers of cancer, and facilitating the rational design of glyco-immunotherapies. These hold great promise clinically in the immuno-oncology field.


Assuntos
Biomarcadores , Sistemas de Liberação de Medicamentos/métodos , Glicômica/métodos , Imunoterapia/métodos , MicroRNAs/metabolismo
9.
BMC Genomics ; 22(1): 69, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33478392

RESUMO

BACKGROUND: Both RNA-Seq and sample freeze-thaw are ubiquitous. However, knowledge about the impact of freeze-thaw on downstream analyses is limited. The lack of common quality metrics that are sufficiently sensitive to freeze-thaw and RNA degradation, e.g. the RNA Integrity Score, makes such assessments challenging. RESULTS: Here we quantify the impact of repeated freeze-thaw cycles on the reliability of RNA-Seq by examining poly(A)-enriched and ribosomal RNA depleted RNA-seq from frozen leukocytes drawn from a toddler Autism cohort. To do so, we estimate the relative noise, or percentage of random counts, separating technical replicates. Using this approach we measured noise associated with RIN and freeze-thaw cycles. As expected, RIN does not fully capture sample degradation due to freeze-thaw. We further examined differential expression results and found that three freeze-thaws should extinguish the differential expression reproducibility of similar experiments. Freeze-thaw also resulted in a 3' shift in the read coverage distribution along the gene body of poly(A)-enriched samples compared to ribosomal RNA depleted samples, suggesting that library preparation may exacerbate freeze-thaw-induced sample degradation. CONCLUSION: The use of poly(A)-enrichment for RNA sequencing is pervasive in library preparation of frozen tissue, and thus, it is important during experimental design and data analysis to consider the impact of repeated freeze-thaw cycles on reproducibility.


Assuntos
Criopreservação , RNA , Congelamento , Humanos , Reprodutibilidade dos Testes , Análise de Sequência de RNA
10.
Trends Biochem Sci ; 46(4): 284-300, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33349503

RESUMO

Characteristically, cells must sense and respond to environmental cues. Despite the importance of cell-cell communication, our understanding remains limited and often lacks glycans. Glycans decorate proteins and cell membranes at the cell-environment interface, and modulate intercellular communication, from development to pathogenesis. Providing further challenges, glycan biosynthesis and cellular behavior are co-regulating systems. Here, we discuss how glycosylation contributes to extracellular responses and signaling. We further organize approaches for disentangling the roles of glycans in multicellular interactions using newly available datasets and tools, including glycan biosynthesis models, omics datasets, and systems-level analyses. Thus, emerging tools in big data analytics and systems biology are facilitating novel insights on glycans and their relationship with multicellular behavior.


Assuntos
Glicômica , Polissacarídeos , Glicosilação
11.
Beilstein J Org Chem ; 16: 2645-2662, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178355

RESUMO

Systems glycobiology aims to provide models and analysis tools that account for the biosynthesis, regulation, and interactions with glycoconjugates. To facilitate these methods, there is a need for a clear glycan representation accessible to both computers and humans. Linear Code, a linearized and readily parsable glycan structure representation, is such a language. For this reason, Linear Code was adapted to represent reaction rules, but the syntax has drifted from its original description to accommodate new and originally unforeseen challenges. Here, we delineate the consensuses and inconsistencies that have arisen through this adaptation. We recommend options for a consensus-based extension of Linear Code that can be used for reaction rule specification going forward. Through this extension and specification of Linear Code to reaction rules, we aim to minimize inconsistent symbology thereby making glycan database queries easier. With a clear guide for generating reaction rule descriptions, glycan synthesis models will be more interoperable and reproducible thereby moving glycoinformatics closer to compliance with FAIR standards. Here, we present Linear Code for Reaction Rules (LiCoRR), version 1.0, an unambiguous representation for describing glycosylation reactions in both literature and code.

12.
Cell ; 183(4): 1043-1057.e15, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32970989

RESUMO

We show that SARS-CoV-2 spike protein interacts with both cellular heparan sulfate and angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain (RBD). Docking studies suggest a heparin/heparan sulfate-binding site adjacent to the ACE2-binding site. Both ACE2 and heparin can bind independently to spike protein in vitro, and a ternary complex can be generated using heparin as a scaffold. Electron micrographs of spike protein suggests that heparin enhances the open conformation of the RBD that binds ACE2. On cells, spike protein binding depends on both heparan sulfate and ACE2. Unfractionated heparin, non-anticoagulant heparin, heparin lyases, and lung heparan sulfate potently block spike protein binding and/or infection by pseudotyped virus and authentic SARS-CoV-2 virus. We suggest a model in which viral attachment and infection involves heparan sulfate-dependent enhancement of binding to ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin presents new therapeutic opportunities.


Assuntos
Betacoronavirus/fisiologia , Heparitina Sulfato/metabolismo , Peptidil Dipeptidase A/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/isolamento & purificação , Sítios de Ligação , COVID-19 , Linhagem Celular , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Heparina/química , Heparina/metabolismo , Heparitina Sulfato/química , Humanos , Rim/metabolismo , Pulmão/metabolismo , Simulação de Dinâmica Molecular , Pandemias , Peptidil Dipeptidase A/química , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
13.
Cell Host Microbe ; 28(4): 586-601.e6, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32841605

RESUMO

The SARS-CoV-2 betacoronavirus uses its highly glycosylated trimeric Spike protein to bind to the cell surface receptor angiotensin converting enzyme 2 (ACE2) glycoprotein and facilitate host cell entry. We utilized glycomics-informed glycoproteomics to characterize site-specific microheterogeneity of glycosylation for a recombinant trimer Spike mimetic immunogen and for a soluble version of human ACE2. We combined this information with bioinformatics analyses of natural variants and with existing 3D structures of both glycoproteins to generate molecular dynamics simulations of each glycoprotein both alone and interacting with one another. Our results highlight roles for glycans in sterically masking polypeptide epitopes and directly modulating Spike-ACE2 interactions. Furthermore, our results illustrate the impact of viral evolution and divergence on Spike glycosylation, as well as the influence of natural variants on ACE2 receptor glycosylation. Taken together, these data can facilitate immunogen design to achieve antibody neutralization and inform therapeutic strategies to inhibit viral infection.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/enzimologia , Infecções por Coronavirus/virologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/enzimologia , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2 , COVID-19 , Glicosilação , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Pandemias , Peptidil Dipeptidase A/química , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/química , Receptores Virais/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Internalização do Vírus
14.
bioRxiv ; 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32839779

RESUMO

The human microbiota has a close relationship with human disease and it remodels components of the glycocalyx including heparan sulfate (HS). Studies of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) spike protein receptor binding domain suggest that infection requires binding to HS and angiotensin converting enzyme 2 (ACE2) in a codependent manner. Here, we show that commensal host bacterial communities can modify HS and thereby modulate SARS-CoV-2 spike protein binding and that these communities change with host age and sex. Common human-associated commensal bacteria whose genomes encode HS-modifying enzymes were identified. The prevalence of these bacteria and the expression of key microbial glycosidases in bronchoalveolar lavage fluid (BALF) was lower in adult COVID-19 patients than in healthy controls. The presence of HS-modifying bacteria decreased with age in two large survey datasets, FINRISK 2002 and American Gut, revealing one possible mechanism for the observed increase in COVID-19 susceptibility with age. In vitro , bacterial glycosidases from unpurified culture media supernatants fully blocked SARS-CoV-2 spike binding to human H1299 protein lung adenocarcinoma cells. HS-modifying bacteria in human microbial communities may regulate viral adhesion, and loss of these commensals could predispose individuals to infection. Understanding the impact of shifts in microbial community composition and bacterial lyases on SARS-CoV-2 infection may lead to new therapeutics and diagnosis of susceptibility.

15.
bioRxiv ; 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32743578

RESUMO

The current COVID-19 pandemic is caused by the SARS-CoV-2 betacoronavirus, which utilizes its highly glycosylated trimeric Spike protein to bind to the cell surface receptor ACE2 glycoprotein and facilitate host cell entry. We utilized glycomics-informed glycoproteomics to characterize site-specific microheterogeneity of glycosylation for a recombinant trimer Spike mimetic immunogen and for a soluble version of human ACE2. We combined this information with bioinformatic analyses of natural variants and with existing 3D-structures of both glycoproteins to generate molecular dynamics simulations of each glycoprotein alone and interacting with one another. Our results highlight roles for glycans in sterically masking polypeptide epitopes and directly modulating Spike-ACE2 interactions. Furthermore, our results illustrate the impact of viral evolution and divergence on Spike glycosylation, as well as the influence of natural variants on ACE2 receptor glycosylation that, taken together, can facilitate immunogen design to achieve antibody neutralization and inform therapeutic strategies to inhibit viral infection.

16.
bioRxiv ; 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32699853

RESUMO

We show that SARS-CoV-2 spike protein interacts with cell surface heparan sulfate and angiotensin converting enzyme 2 (ACE2) through its Receptor Binding Domain. Docking studies suggest a putative heparin/heparan sulfate-binding site adjacent to the domain that binds to ACE2. In vitro, binding of ACE2 and heparin to spike protein ectodomains occurs independently and a ternary complex can be generated using heparin as a template. Contrary to studies with purified components, spike protein binding to heparan sulfate and ACE2 on cells occurs codependently. Unfractionated heparin, non-anticoagulant heparin, treatment with heparin lyases, and purified lung heparan sulfate potently block spike protein binding and infection by spike protein-pseudotyped virus and SARS-CoV-2 virus. These findings support a model for SARS-CoV-2 infection in which viral attachment and infection involves formation of a complex between heparan sulfate and ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin may represent new therapeutic opportunities.

17.
Curr Res Biotechnol ; 2: 22-36, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32285041

RESUMO

Glycosylated biopharmaceuticals are important in the global pharmaceutical market. Despite the importance of their glycan structures, our limited knowledge of the glycosylation machinery still hinders controllability of this critical quality attribute. To facilitate discovery of glycosyltransferase specificity and predict glycoengineering efforts, here we extend the approach to model N-linked protein glycosylation as a Markov process. Our model leverages putative glycosyltransferase (GT) specificity to define the biosynthetic pathways for all measured glycans, and the Markov chain modelling is used to learn glycosyltransferase isoform activities and predict glycosylation following glycosyltransferase knock-in/knockout. We apply our methodology to four different glycoengineered therapeutics (i.e., Rituximab, erythropoietin, Enbrel, and alpha-1 antitrypsin) produced in CHO cells. Our model accurately predicted N-linked glycosylation following glycoengineering and further quantified the impact of glycosyltransferase mutations on reactions catalyzed by other glycosyltransferases. By applying these learned GT-GT interaction rules identified from single glycosyltransferase mutants, our model further predicts the outcome of multi-gene glycosyltransferase mutations on the diverse biotherapeutics. Thus, this modeling approach enables rational glycoengineering and the elucidation of relationships between glycosyltransferases, thereby facilitating biopharmaceutical research and aiding the broader study of glycosylation to elucidate the genetic basis of complex changes in glycosylation.

18.
Proc Natl Acad Sci U S A ; 117(17): 9311-9317, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32277030

RESUMO

Heparin is the most widely prescribed biopharmaceutical in production globally. Its potent anticoagulant activity and safety makes it the drug of choice for preventing deep vein thrombosis and pulmonary embolism. In 2008, adulterated material was introduced into the heparin supply chain, resulting in several hundred deaths and demonstrating the need for alternate sources of heparin. Heparin is a fractionated form of heparan sulfate derived from animal sources, predominantly from connective tissue mast cells in pig mucosa. While the enzymes involved in heparin biosynthesis are identical to those for heparan sulfate, the factors regulating these enzymes are not understood. Examination of the promoter regions of all genes involved in heparin/heparan sulfate assembly uncovered a transcription factor-binding motif for ZNF263, a C2H2 zinc finger protein. CRISPR-mediated targeting and siRNA knockdown of ZNF263 in mammalian cell lines and human primary cells led to dramatically increased expression levels of HS3ST1, a key enzyme involved in imparting anticoagulant activity to heparin, and HS3ST3A1, another glucosaminyl 3-O-sulfotransferase expressed in cells. Enhanced 3-O-sulfation increased binding to antithrombin, which enhanced Factor Xa inhibition, and binding of neuropilin-1. Analysis of transcriptomics data showed distinctively low expression of ZNF263 in mast cells compared with other (non-heparin-producing) immune cells. These findings demonstrate a novel regulatory factor in heparan sulfate modification that could further advance the possibility of bioengineering anticoagulant heparin in cultured cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Heparina/metabolismo , Heparitina Sulfato/biossíntese , Animais , Anticoagulantes , Linhagem Celular , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Regulação da Expressão Gênica/genética , Células HeLa , Heparina/biossíntese , Heparina/genética , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Humanos , Mastócitos/metabolismo , Sulfotransferases/metabolismo , Suínos , Fatores de Transcrição
19.
Nat Neurosci ; 22(10): 1624-1634, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31551593

RESUMO

Hundreds of genes are implicated in autism spectrum disorder (ASD), but the mechanisms through which they contribute to ASD pathophysiology remain elusive. Here we analyzed leukocyte transcriptomics from 1- to 4-year-old male toddlers with ASD or typical development from the general population. We discovered a perturbed gene network that includes highly expressed genes during fetal brain development. This network is dysregulated in human induced pluripotent stem cell-derived neuron models of ASD. High-confidence ASD risk genes emerge as upstream regulators of the network, and many risk genes may impact the network by modulating RAS-ERK, PI3K-AKT and WNT-ß-catenin signaling pathways. We found that the degree of dysregulation in this network correlated with the severity of ASD symptoms in the toddlers. These results demonstrate how the heterogeneous genetics of ASD may dysregulate a core network to influence brain development at prenatal and very early postnatal ages and, thereby, the severity of later ASD symptoms.


Assuntos
Transtorno do Espectro Autista/genética , Redes Reguladoras de Genes/genética , Transtorno do Espectro Autista/patologia , Encéfalo/embriologia , Encéfalo/patologia , Pré-Escolar , Desenvolvimento Fetal/genética , Humanos , Lactente , Leucócitos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Mutação/genética , Células-Tronco Neurais , Proteína Oncogênica v-akt/genética , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/genética , Via de Sinalização Wnt/genética , beta Catenina/genética
20.
Sci Rep ; 9(1): 8827, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222165

RESUMO

Viral contamination in biopharmaceutical manufacturing can lead to shortages in the supply of critical therapeutics. To facilitate the protection of bioprocesses, we explored the basis for the susceptibility of CHO cells to RNA virus infection. Upon infection with certain ssRNA and dsRNA viruses, CHO cells fail to generate a significant interferon (IFN) response. Nonetheless, the downstream machinery for generating IFN responses and its antiviral activity is intact in these cells: treatment of cells with exogenously-added type I IFN or poly I:C prior to infection limited the cytopathic effect from Vesicular stomatitis virus (VSV), Encephalomyocarditis virus (EMCV), and Reovirus-3 virus (Reo-3) in a STAT1-dependent manner. To harness the intrinsic antiviral mechanism, we used RNA-Seq to identify two upstream repressors of STAT1: Gfi1 and Trim24. By knocking out these genes, the engineered CHO cells exhibited activation of cellular immune responses and increased resistance to the RNA viruses tested. Thus, omics-guided engineering of mammalian cell culture can be deployed to increase safety in biotherapeutic protein production among many other biomedical applications.


Assuntos
Células CHO/virologia , Engenharia Genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Microbiologia Industrial , Animais , Biomarcadores , Cricetulus , Resistência a Medicamentos/imunologia , Engenharia Genética/métodos , Interferon Tipo I , Poli I-C/imunologia , Vírus de RNA/imunologia , Fator de Transcrição STAT1 , Transdução de Sinais , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA