Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res Lett ; 12(3): 034027, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28855959

RESUMO

Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.

2.
Ecol Evol ; 4(10): 1994-2003, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24963392

RESUMO

Under the changing climate, asymmetric warming pattern would be more likely during day and night time, instead of symmetric one. Concurrently, the growth responses and water use of plants may be different compared with those estimated based on symmetric warming. In this work, it was compared with the effects of symmetric (ETs) and asymmetric (ETa) elevation of temperature alone, and in interaction with elevated carbon dioxide concentration (EC), on the grain yield (GY) and evapotranspiration in winter wheat (Triticum aestivum L.) based on pot experiment in the North China Plain (NCP). The experiment was carried out in six enclosed-top chambers with following climate treatments: (1) ambient temperature and ambient CO2 (CON), (2) ambient temperature and elevated CO2 (EC), (3) elevated temperature and ambient CO2 (ETs; ETa), and (4) elevated temperature and elevated CO2 (ECETs, ECETa). In symmetric warming, temperature was increased by 3°C and in asymmetric one by 3.5°C during night and 2.5°C during daytime, respectively. As a result, GY was in ETa and ETs 15.6 (P < 0.05) and 10.3% (P < 0.05) lower than that in CON. In ECETs and ECETa treatments, GY was 14.9 (P < 0.05) and 9.1% (P < 0.05) higher than that in CON. Opposite to GY, evapotranspiration was 7.8 (P < 0.05) and 17.9% (P < 0.05) higher in ETa and ETs treatments and 7.2 (P < 0.05) and 2.1% (P > 0.05) lower in ECETs and ECETa treatments compared with CON. Thus, GY of wheat could be expected to increase under the changing climate with concurrent elevation of CO2 and temperature as a result of increased WUE under the elevated CO2. However, the gain would be lower under ETa than that estimated based on ETs due to higher evapotranspiration.

3.
PLoS One ; 8(7): e69027, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894401

RESUMO

Evapotranspiration (E) and CO2 flux (Fc ) in the growing season of an unusual dry year were measured continuously over a Scots pine forest in eastern Finland, by eddy covariance techniques. The aims were to gain an understanding of their biological and environmental control processes. As a result, there were obvious diurnal and seasonal changes in E, Fc , surface conductance (gc ), and decoupling coefficient (Ω), showing similar trends to those in radiation (PAR) and vapour pressure deficit (δ). The maximum mean daily values (24-h average) for E, Fc , gc , and Ω were 1.78 mmol m(-2) s(-1), -11.18 µmol m(-2) s(-1), 6.27 mm s(-1), and 0.31, respectively, with seasonal averages of 0.71 mmol m(-2) s(-1), -4.61 µmol m(-2) s(-1), 3.3 mm s(-1), and 0.16. E and Fc were controlled by combined biological and environmental variables. There was curvilinear dependence of E on gc and Fc on gc . Among the environmental variables, PAR was the most important factor having a positive linear relationship to E and curvilinear relationship to Fc , while vapour pressure deficit was the most important environmental factor affecting gc . Water use efficiency was slightly higher in the dry season, with mean monthly values ranging from 6.67 to 7.48 µmol CO2 (mmol H2O)(-1) and a seasonal average of 7.06 µmol CO2 (µmol H2O)(-1). Low Ω and its close positive relationship with gc indicate that evapotranspiration was sensitive to surface conductance. Mid summer drought reduced surface conductance and decoupling coefficient, suggesting a more biotic control of evapotranspiration and a physiological acclimation to dry air. Surface conductance remained low and constant under dry condition, supporting that a constant value of surface constant can be used for modelling transpiration under drought condition.


Assuntos
Dióxido de Carbono/metabolismo , Pinus sylvestris/metabolismo , Pinus sylvestris/fisiologia , Transpiração Vegetal/fisiologia , Secas
4.
Physiol Plant ; 149(4): 499-514, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23496144

RESUMO

Elevations of carbon dioxide, temperature and ultraviolet-B (UBV) radiation in the growth environment may have a high impact on the accumulation of carbon in plants, and the different factors may work in opposite directions or induce additive effects. To detect the changes in the growth and phytochemistry of silver birch (Betula pendula) seedlings, six genotypes were exposed to combinations of ambient or elevated levels of CO2 , temperature and UVB radiation in top-closed chambers for 7 weeks. The genotypes were relatively similar in their responses, and no significant interactive effects of three-level climate factors on the measured parameters were observed. Elevated UVB had no effect on growth, nor did it alter plant responses to CO2 and/or temperature in combined treatments. Growth in all plant parts increased under elevated CO2 , and height and stem biomass increased under elevated temperature. Increased carbon distribution to biomass did not reduce its allocation to phytochemicals: condensed tannins, most flavonols and phenolic acids accumulated under elevated CO2 and elevated UVB, but this effect disappeared under elevated temperature. Leaf nitrogen content decreased under elevated CO2 . We conclude that, as a result of high genetic variability in phytochemicals, B. pendula seedlings have potential to adapt to the tested environmental changes. The induction in protective flavonoids under UVB radiation together with the positive impact of elevated CO2 and temperature mitigates possible UVB stress effects, and thus atmospheric CO2 concentration and temperature are the climate change factors that will dictate the establishment and success of birch at higher altitudes in the future.


Assuntos
Betula/fisiologia , Dióxido de Carbono/farmacologia , Carbono/metabolismo , Nitrogênio/metabolismo , Estresse Fisiológico , Betula/efeitos dos fármacos , Betula/crescimento & desenvolvimento , Betula/efeitos da radiação , Biomassa , Mudança Climática , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Caules de Planta/efeitos da radiação , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/efeitos da radiação , Temperatura , Raios Ultravioleta
5.
Tree Physiol ; 31(3): 323-38, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21436231

RESUMO

A process-based ecosystem model was used to assess the impacts of changing climate on net photosynthesis and total stem wood growth in relation to water availability in two unmanaged Norway spruce (Picea abies) dominant stands with a mixture of Scots pine (Pinus sylvestris) and birch (Betula sp.). The mixed stands were grown over a 100-year rotation (2000-99) in southern and northern Finland with initial species shares of 50, 25 and 25% for Norway spruce, Scots pine and birch, respectively. In addition, pure Norway spruce, Scots pine and birch stands were used as a comparison to identify whether species' response is different in mixed and pure stands. Soil type and moisture conditions (moderate drought) were expected to be the same at the beginning of the simulations irrespective of site location. Regardless of tree species, both annual net canopy photosynthesis (P(nc)) and total stem wood growth (V(s)) were, on average, lower on the southern site under the changing climate compared with the current climate (difference increasing toward the end of the rotation); the opposite was the case for the northern site. Regarding the stand water budget, evapotranspiration (E(T)) was higher under the changing climate regardless of site location. Transpiration and evaporation from the canopy affected water depletion the most. Norway spruce and birch accounted for most of the water depletion in mixed stands on both sites regardless of climatic condition. The annual soil water deficit (W(d)) was higher on the southern site under the changing climate. On the northern site, the situation was the opposite. According to our results, the growth of pure Norway spruce stands in southern Finland could be even lower than the growth of Norway spruce in mixed stands under the changing climate. The opposite was found for pure Scots pine and birch stands due to lower water depletion. This indicates that in the future the management should be properly adapted to climate change in order to sustain the productivity of mixed stands dominated by Norway spruce.


Assuntos
Betula/crescimento & desenvolvimento , Mudança Climática , Picea/crescimento & desenvolvimento , Pinus sylvestris/crescimento & desenvolvimento , Madeira/crescimento & desenvolvimento , Carbono/metabolismo , Secas , Ecossistema , Finlândia , Modelos Biológicos , Fotossíntese , Transpiração Vegetal , Solo , Água
6.
New Phytol ; 190(1): 161-168, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21175637

RESUMO

Elevated carbon dioxide (CO2 ), temperature (T) and ultraviolet-B (UV-B) radiation may affect plant growth and secondary chemistry in different directions, but the effect of the combination of the three factors has seldom been tested. Here, we grew four dark-leaved willow (Salix myrsinifolia) clones under combinations of ambient or elevated CO2, T and UV-B radiation in top-closed chambers for 7 wk. Elevated UV-B had no effects on growth or phenolic compounds, and there were no significant interactions between UV-B, CO2 and T. CO2 alone increased most growth parameters, but the magnitude of the effect varied among the clones. Total phenolics increased at elevated CO2 , whereas they decreased at elevated T. The responses varied between the clones. The results imply that dark-leaved willow are fairly resistant to the applied three-factor climate change, probably because of high constitutive defense. However, the interactions between clone and climate change factors implies that some clones are more susceptible than the species as a whole.


Assuntos
Dióxido de Carbono/farmacologia , Mudança Climática , Folhas de Planta/fisiologia , Salix/fisiologia , Salix/efeitos da radiação , Temperatura , Raios Ultravioleta , Análise de Variância , Biomassa , Flavonoides/metabolismo , Modelos Lineares , Fenóis/metabolismo , Folhas de Planta/efeitos da radiação , Ácido Salicílico/metabolismo , Salix/efeitos dos fármacos
7.
Philos Trans R Soc Lond B Biol Sci ; 363(1501): 2341-51, 2008 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-18024332

RESUMO

This study investigated the sensitivity of managed boreal forests to climate change, with consequent needs to adapt the management to climate change. Model simulations representing the Finnish territory between 60 and 70 degrees N showed that climate change may substantially change the dynamics of managed boreal forests in northern Europe. This is especially probable at the northern and southern edges of this forest zone. In the north, forest growth may increase, but the special features of northern forests may be diminished. In the south, climate change may create a suboptimal environment for Norway spruce. Dominance of Scots pine may increase on less fertile sites currently occupied by Norway spruce. Birches may compete with Scots pine even in these sites and the dominance of birches may increase. These changes may reduce the total forest growth locally but, over the whole of Finland, total forest growth may increase by 44%, with an increase of 82% in the potential cutting drain. The choice of appropriate species and reduced rotation length may sustain the productivity of forest land under climate change.


Assuntos
Agricultura Florestal/métodos , Efeito Estufa , Modelos Teóricos , Árvores/crescimento & desenvolvimento , Finlândia , Especificidade da Espécie
8.
Tree Physiol ; 27(9): 1329-38, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17545132

RESUMO

We studied the effects of elevated temperature and carbon dioxide concentration ([CO(2)]) alone and together on wood anatomy of 20-year-old Scots pine (Pinus sylvestris L.) trees. The study was conducted in 16 closed chambers, providing a factorial combination of two temperature regimes and two CO(2) concentrations (ambient and elevated), with four trees in each treatment. The climate scenario included a doubling of [CO(2)] and a corresponding increase of 2-6 degrees C in temperature at the site depending on the season. Anatomical characteristics analyzed were annual earlywood, latewood and ring widths, intra-ring wood densities (earlywood, latewood and mean wood density), tracheid width, length, wall thickness, lumen diameter, wall thickness:lumen diameter ratio and mass per unit length (coarseness), and numbers of rays, resin canals and tracheids per xylem cross-sectional area. Elevated [CO(2)] increased ring width in four of six treatment years; earlywood width increased in the first two years and latewood width in the third year. Tracheid walls in both the earlywood and latewood tended to become thicker over the 6-year treatment period when temperature or [CO(2)] was elevated alone, whereas in the combined treatment they tended to become thinner relative to the tracheids of trees grown under ambient conditions. Latewood tracheid lumen diameters were larger in all the treatments relative to ambient conditions over the 6-year period, whereas lumen diameters in earlywood increased only in response to elevated [CO(2)] and were 3-6% smaller in the treatments with elevated temperature than in ambient conditions. Tracheid width, length and coarseness were greater in trees grown in elevated than in ambient temperature. The number of resin canals per mm(2) decreased in the elevated [CO(2)] treatment and increased in the elevated temperature treatments relative to ambient conditions. The treatments decreased the number of rays and tracheids per mm(2) of cross-sectional area, the greatest decrease occurring in the elevated [CO(2)] treatment. It seemed that xylem anatomy was affected more by elevated temperature than by elevated [CO(2)] and that the effects of temperature were confined to the earlywood.


Assuntos
Dióxido de Carbono , Efeito Estufa , Pinus sylvestris/anatomia & histologia , Temperatura , Xilema/anatomia & histologia
9.
Ann Bot ; 99(2): 345-53, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17218344

RESUMO

BACKGROUND AND AIMS: Distinguishing between, and quantifying, the different components of ecosystem C fluxes is critical in predicting the responses of ecosystem C cycling to climate change. The aims of this study were to quantify the photosynthetic and respiratory fluxes of a 50-year-old Scots pine (Pinus sylvestris) ecosystem, and to distinguish respiration of branches with needles from that of stems, and that of soil. METHODS: The CO2 flux of the ecosystem was continuously measured using the eddy covariance (EC) method, and its components (respiration and photosynthesis of a branch with needles, stem and soil surface) were measured with an automated chamber system, from 2001 to 2004. KEY RESULTS: All values below are chamber based. The average temperature coefficient (Q10) of respiration was 2.7, 2.2 and 4.0, respectively, for branch (Rbran), stem (Rstem) and the soil surface (Rsoil). Respiration at a reference temperature of 15 degrees C (R15) was 1.27, 0.49 and 4.02 micromol CO2 m(-2) ground s(-1) for the three components, respectively. Over 4 years, the annual Rbran, Rstem and Rsoil ranged from 196 to 256, 56 to 83 and 439 to 598 g C m(-2) ground year(-1), respectively, with a 4-year average of 227, 72 and 507 g C m(-2) ground year(-1). Annual ecosystem respiration (Reco) was 731, 783, 909 and 751 g C m(-2) ground year(-1) in years 2001-2004, respectively, gross primary production (GPP) was 922, 1030, 1138 and 1001 g C m(-2) ground year(-1), and net ecosystem production (NEP) was 191, 247, 229 and 251 g C m(-2) ground year(-1). The average contribution of Rbran, Rstem and Rsoil to Reco was 29, 9 and 62 %, respectively. Overstorey photosynthesis accounted for 96 % of GPP. The average Reco/GPP ratio was 0.78. Net primary production (NPP) in the 4 years was 469, 581, 600 and 551 g C m(-2) year(-1), respectively, with the NPP/GPP ratio 0.54 averaged over the years. CONCLUSIONS: Respiration from the soil is the dominant component of ecosystem respiration. Differences between years in Reco were due to differences in temperature during the growing season. Rsoil was more sensitive to temperature than Rbran and Rstem, and differences in Rsoil were responsible for the differences in Reco between years.


Assuntos
Carbono/metabolismo , Ecossistema , Pinus sylvestris/metabolismo , Dióxido de Carbono/metabolismo , Consumo de Oxigênio , Fotossíntese , Transpiração Vegetal , Estações do Ano , Fatores de Tempo , Árvores
10.
New Phytol ; 173(3): 463-480, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17244042

RESUMO

Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic rate (the main [CO2] response); increasing length of growing season (the main temperature response); and higher leaf-area index (the main N deposition and partly [CO2] response). Soil organic matter will increase with increasing litter input, although priming may decrease the soil C stock initially, but litter quality effects should be minimal (response to [CO2], N deposition, and temperature); will decrease because of increasing temperature; and will increase because of retardation of decomposition with N deposition, although the rate of decomposition of high-quality litter can be increased and that of low-quality litter decreased. Single-factor responses can be misleading because of interactions between factors, in particular those between N and other factors, and indirect effects such as increased N availability from temperature-induced decomposition. In the long term the strength of feedbacks, for example the increasing demand for N from increased growth, will dominate over short-term responses to single factors. However, management has considerable potential for controlling the C store.


Assuntos
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Ecossistema , Nitrogênio/metabolismo , Temperatura , Árvores/fisiologia
11.
J Exp Bot ; 56(409): 155-65, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15533884

RESUMO

Measurements of sap flow, crown structure, and microclimate were used to estimate the transpiration of individual 30-year-old Pinus sylvestris L. trees grown in elevated temperature and CO2. The trees were enclosed in closed-top chambers and exposed either to current ambient conditions (CON), or elevated CO2 (+350 micromol mol(-1); EC), or elevated temperature (+2 to +6 degrees C; ET) or a combination of EC and ET (ECT) since 1996, and the measurements were made from 1999 to 2001. EC significantly increased annual sap flow per tree (Ft.m) by 14% in 1999, but reduced it by 13% in 2000 and 16% in 2001. The CO2-induced increase in Ft.m in 1999 was due to a large increase in foliage area of trees, which more than compensated for a small decrease in crown conductance (Gc). The CO2-induced decreases in Ft.m in 2000 and 2001 resulted from a pronounced decline in Gc, which was much greater than the increase in foliage area. The CO2-induced increase in sensitivity of Gc at high vapour pressure deficit (VPD) did not alter the general response of sap flow to CO2 enrichment, but it did affect the diurnal courses of sap flow on some days during the main growing season (days 150-240). ET increased Ft.m by 53%, 45%, and 57% in 1999, 2000, and 2001, respectively, attributable to the combined effects of greater foliage area and maximum crown conductance, lower stomatal sensitivity to high VPD, and higher transpiration demand relative to the control treatments. There was no significant interaction between CO2 and temperature on sap flow, because ECT entailed approximately similar patterns of sap flow to ET, suggesting that the temperature played a dominate role in the case of ECT under boreal climate conditions.


Assuntos
Dióxido de Carbono/farmacologia , Temperatura Alta , Pinus/fisiologia , Estações do Ano , Relação Dose-Resposta a Droga , Pinus/crescimento & desenvolvimento , Componentes Aéreos da Planta/crescimento & desenvolvimento , Transpiração Vegetal/fisiologia
12.
Tree Physiol ; 25(1): 49-56, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15519985

RESUMO

Stem respiration in 20-year-old Scots pine (Pinus sylvestris L.) trees was examined following 5 years of exposure to ambient conditions (CON), elevated atmospheric carbon dioxide concentration ([CO2]) (ambient + 350 micromol mol(-1), (EC)), elevated temperature (ambient + 2-6 degrees C, (ET)) or a combination of elevated [CO2] and elevated temperature (ECT). Stem respiration varied seasonally regardless of the treatment and displayed a similar trend to temperature, with maximum rates occurring around Day 190 in summer and minimum rates in winter. Respiration normalized to 15 degrees C (R15) was higher in the growing season than in the non-growing season, whereas the temperature coefficient (Q10) was lower in the growing season. Annually averaged R15 was 0.36, 0.43, 0.40 and 0.44 micromol m(-2) s(-1) under CON, EC, ET and ECT conditions, respectively, whereas the corresponding values for total stem respiration were 6.55, 7.69, 7.50 and 7.90 mol m(-2) year(-1). The EC, ET and ECT treatments increased R15 by 18, 11 and 22%, respectively, relative to CON, and increased the modeled annual total stem respiration by 18, 15 and 21%. The increase in modeled annual stem respiration under EC and ECT conditions was caused mainly by higher maintenance respiration (22 and 25%, respectively, whereas the increase in growth respiration was 9 and 12%). Growth respiration was unaltered by ET. The treatments did not significantly affect the respiratory response to stem temperature; the mean Q10 value was 2.04, 2.10, 1.99 and 2.12 in the CON, EC, ET and ECT treatments, respectively. It is suggested that the increase in stem respiration was partly a result of the increased growth rate. We conclude that elevated [CO2] increased the maintenance component of respiration more than the growth component.


Assuntos
Pinus sylvestris/fisiologia , Árvores/fisiologia , Dióxido de Carbono , Respiração Celular/fisiologia , Pinus sylvestris/metabolismo , Caules de Planta/metabolismo , Estações do Ano , Temperatura , Árvores/metabolismo
13.
Tree Physiol ; 25(1): 75-83, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15519988

RESUMO

Growth and wood properties of 20-year-old Scots pine (Pinus sylvestris L.) trees were studied for 6 years in 16 closed chambers providing a factorial combination of two temperature regimes (ambient and elevated) and two carbon dioxide concentrations ([CO2]) (ambient and twice ambient). The elevation of temperature corresponded to the predicted effect at the site of a doubling in atmospheric [CO2]. Annual height and radial growth and wood properties were analyzed during 1997-2002. Physical wood properties analyzed included early- and latewood widths and their proportions, intra-ring wood densities, early- and latewood density and mean fiber length. Chemical wood properties analyzed included concentrations of acetone-soluble extractives, lignin, cellulose and hemicellulose. There were no significant treatment effects on height growth during the 6-year study. Elevated [CO2] increased ring width by 66 and 47% at ambient and elevated temperatures, respectively. At ambient [CO2], elevated temperature increased ring width by 19%. Increased ring width in response to elevated [CO2] resulted from increases in both early- and latewood width; however, there was no effect of the treatments on early- and latewood proportions. Mean wood density, earlywood density and fiber length increased in response to elevated temperature. The chemical composition of wood was affected by elevated [CO2], which reduced the cellulose concentration, and by elevated temperature, which reduced the concentration of acetone-soluble extractives. Thus, over the 6-year period, radial growth was significantly increased by elevated [CO2], and some wood properties were significantly affected by elevated temperature or elevated [CO2], or both, indicating that climate change may affect the material properties of wood.


Assuntos
Pinus sylvestris/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Dióxido de Carbono , Lignina/análise , Pinus sylvestris/fisiologia , Caules de Planta/crescimento & desenvolvimento , Temperatura , Árvores/fisiologia , Madeira/química , Madeira/crescimento & desenvolvimento
14.
Ann Bot ; 94(6): 889-96, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15469943

RESUMO

BACKGROUND AND AIMS: Stem respiration of trees is a major, but poorly assessed component of the carbon balance of forests, and important for geo-chemistry. Measurements are required under naturally changing seasonal conditions in different years. Therefore, intra- and inter-annual carbon fluxes of stems in forests were measured continuously from April to November in three consecutive years. METHODS: Stem respiratory CO2 fluxes of 50-year-old Scots pine (Pinus sylvestris) trees were continuously measured with a CO2 analyser, and, concomitantly, stem circumference, stem and air temperature and other environmental factors and photosynthesis, were also measured automatically. KEY RESULTS: There were diurnal, seasonal and inter-annual changes in stem respiration, which peaked at 1600 h during the day and was highest in July. The temperature coefficient of stem respiration (Q10) was greater during the growing season than when growth was slow or had stopped, and more sensitive to temperature in the growing season. The annual Q10 remained relatively constant at about 2 over the three years, while respiration at a reference temperature of 15 degrees C (R15) was higher in the growing than in the non-growing season (1.09 compared with 0.78 micromol m(-2) stem surface s(-1)), but was similar between the years. Maintenance respiration was 76 %, 82 % and 80 % of the total respiration of 17.46, 17.26 and 19.35 mol m2 stem surface in 2001, 2002 and 2003, respectively. The annual total stem respiration of the stand per unit ground area was 75.97 gC m(-2) in 2001 and 74.28 gC m(-2) in 2002. CONCLUSIONS: Stem respiration is an important component in the annual carbon balance of a Scots pine stand, contributing 9 % to total carbon loss from the ecosystem and consuming about 8 % of the carbon of the ecosystem gross primary production. Stem (or air) temperature was the most important predictor of stem carbon flux. The magnitude of stem respiration is modified by photosynthesis and tree growth. Solar radiation indirectly affects stem respiration through its effect on photosynthesis.


Assuntos
Pinus sylvestris/fisiologia , Caules de Planta/fisiologia , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Ritmo Circadiano , Clima , Estações do Ano
15.
Tree Physiol ; 23(13): 889-97, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14532012

RESUMO

Impacts of elevated temperature and carbon dioxide concentration ([CO2]) on wood properties of 15-year-old Scots pines (Pinus sylvestris L.) grown under conditions of low nitrogen supply were investigated in open-top chambers. The treatments consisted of (i) ambient temperature and ambient [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC) and (iv) elevated temperature and elevated [CO2] (ET+EC). Wood properties analyzed for the years 1992-1994 included ring width, early- and latewood width and their proportions, intra-ring wood density (minimum, maximum and mean, as well as early- and latewood densities), mean fiber length and chemical composition of the wood (cellulose, hemicellulose, lignin and acetone extractive concentration). Absolute radial growth over the 3-year period was 54% greater in AT+EC trees and 30 and 25% greater in ET+AC and ET+EC trees, respectively, than in AT+AC trees. Neither elevated temperature nor elevated [CO2] had a statistically significant effect on ring width, early- and latewood widths or their proportions. Both latewood density and maximum intra-ring density were increased by elevated [CO2], whereas fiber length was increased by elevated temperature. Hemicellulose concentration decreased and lignin concentration increased significantly in response to elevated temperature. There were no statistically significant interaction effects of elevated temperature and elevated [CO2] on the wood properties, except on earlywood density.


Assuntos
Pinus/fisiologia , Árvores/fisiologia , Madeira , Dióxido de Carbono/fisiologia , Temperatura Alta
16.
Ann Bot ; 92(1): 53-64, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12740213

RESUMO

An automatic gas exchange system was used to continuously measure water and carbon fluxes of attached shoots of Scots pine trees (Pinus sylvestris L.) grown in environment-controlled chambers for a 3-year period (1998-2000) and exposed to either normal ambient conditions (CON), elevated CO2 (+350 micro mol mol-1; EC), elevated temperature (+2-6 degrees C; ET) or a combination of EC and ET (ECT). EC treatment enhanced the mean daily total carbon flux per unit projected needle area (Fc.d) by 17-21 %, depending on the year. This corresponds to a 16-24 % increase in light-use efficiency (LUE) based on incident photosynthetically active radiation. The EC treatment reduced the mean daily total water flux (Fw.d) by 1-12 %, corresponding to a 13-35 % increase in water-use efficiency (WUE). The ET treatment increased Fc.d by 10-18 %, resulting in an 8-19 % increase in LUE, and Fw.d by 48-74 %, resulting in a reduction of WUE by 19-34 %. There was no interaction between CO2 and temperature elevation in connection with either carbon or water fluxes, as the carbon flux responded similarly in both ECT and EC, while the water flux in the ECT treatment was similar to that in ET. Regressions indicated that the increase in maximum LUE was greater with increasing air temperature, whereas changes in WUE were related only to high vapour pressure deficit. Furthermore, changes in LUE and WUE caused by ECT treatment displayed strong diurnal and seasonal variation.


Assuntos
Dióxido de Carbono/farmacologia , Luz , Pinus/efeitos dos fármacos , Pinus/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Água/metabolismo , Pinus/crescimento & desenvolvimento , Pinus/efeitos da radiação , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos da radiação , Estações do Ano , Temperatura , Água/farmacologia
17.
Tree Physiol ; 22(17): 1241-8, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12464577

RESUMO

Sixteen 20-year-old Scots pine (Pinus sylvestris L.) trees growing in the field were enclosed in environment-controlled chambers that for 4 years maintained: (1) ambient conditions (CON); (2) elevated atmospheric carbon dioxide concentration [CO2] (ambient + 350 micromol mol-1; EC); (3) elevated temperature (ambient + 2-3 degrees C; ET); or (4) elevated [CO2] and temperature (EC+ET). Dark respiration rate, specific leaf area (SLA) and the concentrations of starch and soluble sugars in needles were measured in the fourth year. Respiration rates, on both an area and a mass basis, and SLA decreased in EC relative to CON, but increased in ET and EC+ET, regardless of needle age class. Starch and soluble sugar concentrations for a given needle age class increased in EC, but decreased slightly in ET and EC+ET. Respiration rates and SLA were highest in current-year needles in all treatments, whereas starch and soluble sugar concentrations were highest in 1-year-old needles. Relative to that of older needles, respiration of current-year needles was inhibited less by EC, but increased in response to ET and EC+ET. All treatments enhanced the difference in respiration between current-year and older needles relative to that in CON. Age had a greater effect on needle respiration than any of the treatments. There were no differences in carbohydrate concentration or SLA between needle age classes in response to any treatment. Relative to CON, the temperature coefficient (Q10) of respiration increased slightly in EC, regardless of age, but declined significantly in ET and EC+ET, indicating acclimation of respiration to temperature.


Assuntos
Respiração Celular/fisiologia , Pinus/fisiologia , Folhas de Planta/fisiologia , Árvores/fisiologia , Metabolismo dos Carboidratos , Dióxido de Carbono/fisiologia , Pinus/metabolismo , Folhas de Planta/metabolismo , Temperatura , Árvores/metabolismo
18.
Tree Physiol ; 22(14): 963-72, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12359523

RESUMO

We investigated the impacts of elevated temperature and carbon dioxide concentration ([CO2]) on diameter growth of Scots pine (Pinus sylvestris L.), aged about 20 years, grown with a low nitrogen supply in closed chambers at (i) ambient temperature and [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC), and (iv). elevated temperature and [CO2] (ET+EC). Each treatment was replicated four times. Diameter growth was monitored with a band dendrograph at 15-min intervals throughout the growing seasons of 1997, 1998 and 1999. Over the monitoring period, diameter growth began 2-3 weeks earlier in trees in the ET+EC and ET+AC chambers than in trees in the AT+AC and AT+EC chambers. However, the cessation of growth occurred about a week later in trees in the ET+EC, ET+AC and AT+EC chambers compared with the AT+AC chambers. The duration of the growing season was 115 and 108 days in the ET+EC and ET+AC chambers, respectively, and 95 and 84 days in the AT+EC and AT+AC chambers, respectively. The ET+AC and ET+EC treatments enhanced diameter growth most early in the growing season, whereas in trees in the AT+AC and AT+EC treatments diameter growth rate was highest in the middle of the growing season. Diameter growth rate leveled off more slowly in trees in the ET+EC and AT+EC treatments than in the other treatments. The growth response to elevated T, elevated [CO2] or both decreased with time and it was less than the maximum observed in other studies for small seedlings and under optimal growth conditions. Nevertheless, cumulative diameter growth for the 3-year period was 67% greater in trees in the ET+EC treatment, and 57 and 26% greater in trees in the AT+EC and ET+AC treatments, respectively, compared with trees in the AT+AC treatment. Over the 3 years, [CO2] had a statistically significant (P < 0.10) effect on both absolute and relative diameter growth, but the interaction between [CO2] and temperature was not significant.


Assuntos
Pinus/crescimento & desenvolvimento , Dióxido de Carbono/fisiologia , Pinus/fisiologia , Pinus sylvestris , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Estações do Ano , Temperatura
19.
Tree Physiol ; 14(7_9): 1081-1095, 1994.
Artigo em Inglês | MEDLINE | ID: mdl-14967672

RESUMO

We have developed a forest ecosystem model to assess the effects of climate change on the functioning and structure of boreal coniferous forests assuming that temperature and precipitation are the major variables of the niche occupied by a tree species. We specified weather patterns to a level representing the time constant of different physiological and ecological processes relevant to the survival, growth and death of trees. We thereby coupled the long-term dynamics of the forest ecosystem with climate through physiological mechanisms such as photosynthesis and respiration in terms of energy flow through the ecosystem. The hydrological and nutrient cycles couple the dynamics of the forest ecosystem with climate change through soil processes, which represent the thermal and hydraulic properties of the soil, and the decomposition of litter and humus with mineralization of nutrients. Simulations for southern Finland (62 degrees N) indicated that an increase in temperature of 5 degrees C over one hundred years could reduce soil water in Scots pine-dominated forest ecosystems. At the same time, the temperature increase could enhance photosynthesis up to 6-8% under current CO(2) concentrations (330 ppm) and up to 8-10% under elevated CO(2) concentrations (660 ppm). Because the elevated temperature and CO(2) concentration caused an increase in respiration (12-14% more than under the current climate), total stem production increased only up to 4% with a 5 degrees C increase in temperature and up to 6% when temperature and atmospheric CO(2) concentration were increased simultaneously. Because transpiration only increased up to 5% in response to elevated temperature and CO(2) concentration, the water use efficiency of Scots-pine dominated forest ecosystems increased up to 3%, particularly during the late rotation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA