Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genet Med ; 20(10): 1216-1223, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29323667

RESUMO

PURPOSE: Given the rapid pace of discovery in rare disease genomics, it is likely that improvements in diagnostic yield can be made by systematically reanalyzing previously generated genomic sequence data in light of new knowledge. METHODS: We tested this hypothesis in the United Kingdom-wide Deciphering Developmental Disorders study, where in 2014 we reported a diagnostic yield of 27% through whole-exome sequencing of 1,133 children with severe developmental disorders and their parents. We reanalyzed existing data using improved variant calling methodologies, novel variant detection algorithms, updated variant annotation, evidence-based filtering strategies, and newly discovered disease-associated genes. RESULTS: We are now able to diagnose an additional 182 individuals, taking our overall diagnostic yield to 454/1,133 (40%), and another 43 (4%) have a finding of uncertain clinical significance. The majority of these new diagnoses are due to novel developmental disorder-associated genes discovered since our original publication. CONCLUSION: This study highlights the importance of coupling large-scale research with clinical practice, and of discussing the possibility of iterative reanalysis and recontact with patients and health professionals at an early stage. We estimate that implementing parent-offspring whole-exome sequencing as a first-line diagnostic test for developmental disorders would diagnose >50% of patients.


Assuntos
Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Sequenciamento do Exoma/métodos , Genoma Humano/genética , Deficiências do Desenvolvimento/patologia , Exoma , Feminino , Predisposição Genética para Doença , Testes Genéticos , Genômica , Humanos , Masculino , Doenças Raras , Reino Unido
2.
Eur J Pharmacol ; 604(1-3): 1-11, 2009 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-19100256

RESUMO

The human 5-hydroxytryptamine (5-HT(4)) receptor is encoded by a highly complex gene which gives rise to at least 10 distinct splice variants. However, the functional relevance of these variants is unknown. In rat, only three such variants have been identified, 5-HT(4a) (r5-HT(4a)), 5-HT(4b) (r5-HT(4b)) and 5-HT(4e) (r5-HT(4e)). In the current study we identify and characterise the pharmacology of a novel rat splice variant (r5-HT(4c1)) and present the first comprehensive analysis of 5-HT(4) splice variant mRNA expression levels throughout the rat gastrointestinal tract. In addition, we describe preliminary characterisation of the first 5-HT(4) splice variant specific antibodies. In transfected cells, r5-HT(4c1) receptor exhibited similar binding properties to r5-HT(4a) and r5-HT(4b). Functional studies showed that 5-HT(4) agonists prucalopride (4-amino-5-chloro-2,3-dihydro-N-[1-(3-methoxypropyl)-4-piperidinyl]-7-benzofuran carboxamide monohydrochloride and renzapride (+/-)-endo-4-amino-5-chloro-2-methoxy-N-(1-azabicyclo[3.3.1]non-4-yl)benzamide monohydrochloride) acted as partial agonists at r5-HT(4c1), but full agonists at r5-HT(4a) and r5-HT(4b). Moreover, in contrast to r5-HT(4a) and r5-HT(4b), r5-HT(4c1) was not constitutively active. TaqMan mRNA analysis showed that r5-HT(4a) expression in brain and dorsal root ganglion exceeded that in the gastrointestinal tract, whilst the reverse was true for r5-HT(4b) and r5-HT(4c1). mRNA expression of each variant also increased distally throughout the gastrointestinal tract with the highest levels in the colon. r5-HT(4a) and r5-HT(4b) specific immunoreactivity was abundant on enteric neurons in jejunum, ileum and colon as well as neurons and satellite cells of the dorsal root ganglion. Only r5-HT(4b) immunoreactivity was observed on endocrine cells in the duodenum. These data could have implications in rat models and aid understanding of 5-HT(4) splice variant function.


Assuntos
Processamento Alternativo , Anticorpos Monoclonais/farmacologia , Receptores 5-HT4 de Serotonina/genética , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Sequência de Bases , Ligação Competitiva , Linhagem Celular , Membrana Celular/metabolismo , Clonagem Molecular , AMP Cíclico/metabolismo , Feminino , Trato Gastrointestinal/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Dados de Sequência Molecular , Isoformas de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Receptores 5-HT4 de Serotonina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Agonistas do Receptor de Serotonina/farmacologia , Transfecção
3.
J Recept Signal Transduct Res ; 26(3): 159-78, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16777713

RESUMO

Eight members of the TRP-melastatin (TRPM) subfamily have been identified, whose physiological functions and distribution are poorly characterized. Although tissue expression and distribution patterns have been reported for individual TRPM channels, comparisons between individual studies are not possible because of variations in analysis techniques and tissue selection. We report here a comparative analysis of the expression patterns of all of the human TRPM channels in selected peripheral tissues and the central nervous system (CNS) using two distinct but complimentary approaches: TaqMan and SYBR Green real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). These techniques generated comparative distribution profiles and demonstrated tissue-specific co-expression of TRPM mRNA species, indicating significant potential for the formation of heteromeric channels. TRPM channels 2, 4, 5, 6, and 7 in contrast to 1, 3, and 8 are widely distributed in the CNS and periphery. The tissues demonstrating highest expression for individual family members were brain (TRPM1), brain and bone marrow (TRPM2), brain and pituitary (TRPM3), intestine and prostate (TRPM4), intestine, pancreas, and prostate (TRPM5), intestine and brain (TRPM6), heart, pituitary, bone, and adipose tissue (TRPM7), and prostate and liver (TRPM8). The data reported here will guide the elucidation of TRPM channel physiological functions.


Assuntos
Canais de Cátion TRPM/genética , Sequência de Bases , Primers do DNA/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/estatística & dados numéricos , Sensibilidade e Especificidade , Canais de Cátion TRPM/classificação , Distribuição Tecidual
4.
Neuropharmacology ; 50(1): 89-97, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16260005

RESUMO

TRPM2, a member of the TRP ion channel family, is expressed both in the brain and immune cells of the monocyte lineage. Functionally, it is unique in its activation by intracellular ADP-ribose and both oxidative and nitrosative stress. To date studies of this channel have concentrated on human recombinant channels and rodent native preparations. This provides the potential for cross-species complications in the interpretation of native tissue observations based on recombinant channel phenotype. Consequently, we have cloned and heterologously expressed rat TRPM2 (rTRPM2) in HEK293 cells. We find that, like hTRPM2, it responds to intracellular ADP-ribose in a manner dependent on extracellular Ca(2+). At the single channel level rTRPM2 is a slow gating, large conductance (84pS) channel that rapidly runs down in isolated membrane patches. Pharmacologically, rTRPM2 is rapidly and irreversibly blocked by clotrimazole (10muM), thus resembling hTRPM2 but not the TRPM2-like current of the rat-derived insulinoma CRI-G1, which exhibits reversible inhibition by this agent. We show that cultured rat striatal neurones exhibit an ADP-ribose-activated conductance at both the whole cell and single channel level. Pharmacologically this neuronal current can be irreversibly inhibited by clotrimazole. It is also sensitive to removal of extracellular Ca(2+), suggesting that it is mediated by TRPM2-containing channels. These data provide a functional characterisation of heterologously expressed rTRPM2 and demonstrate that, in addition to the previous descriptions in immune cells, microglia and insulinomas, a TRPM2-like conductance can be found in neurones derived from the rodent CNS.


Assuntos
Neostriado/metabolismo , Neurônios/metabolismo , Proteínas Recombinantes/metabolismo , Canais de Cátion TRPM/metabolismo , Adenosina Difosfato Ribose/farmacologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Clonagem Molecular , DNA/biossíntese , DNA/genética , Eletrofisiologia , Peróxido de Hidrogênio/farmacologia , Indicadores e Reagentes , Microscopia de Fluorescência , Neostriado/citologia , Estresse Oxidativo/fisiologia , Técnicas de Patch-Clamp , Ratos , Canais de Cátion TRPM/efeitos dos fármacos , Transfecção
5.
J Biol Chem ; 277(14): 12302-9, 2002 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-11805119

RESUMO

The regulation and control of plasma membrane Ca(2+) fluxes is critical for the initiation and maintenance of a variety of signal transduction cascades. Recently, the study of transient receptor potential channels (TRPs) has suggested that these proteins have an important role to play in mediating capacitative calcium entry. In this study, we have isolated a cDNA from human brain that encodes a novel transient receptor potential channel termed human TRP7 (hTRP7). hTRP7 is a member of the short TRP channel family and is 98% homologous to mouse TRP7 (mTRP7). At the mRNA level hTRP7 was widely expressed in tissues of the central nervous system, as well as some peripheral tissues such as pituitary gland and kidney. However, in contrast to mTRP7, which is highly expressed in heart and lung, hTRP7 was undetectable in these tissues. For functional analysis, we heterologously expressed hTRP7 cDNA in an human embryonic kidney cell line. In comparison with untransfected cells depletion of intracellular calcium stores in hTRP7-expressing cells, using either carbachol or thapsigargin, produced a marked increase in the subsequent level of Ca(2+) influx. This increased Ca(2+) entry was blocked by inhibitors of capacitative calcium entry such as La(3+) and Gd(3+). Furthermore, transient transfection of an hTRP7 antisense expression construct into cells expressing hTRP7 eliminated the augmented store-operated Ca(2+) entry. Our findings suggest that hTRP7 is a store-operated calcium channel, a finding in stark contrast to the mouse orthologue, mTRP7, which is reported to enhance Ca(2+) influx independently of store depletion, and suggests that human and mouse TRP7 channels may fulfil different physiological roles.


Assuntos
Cálcio/metabolismo , Canais Iônicos/química , Proteínas de Membrana , Sequência de Aminoácidos , Encéfalo/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular , Sistema Nervoso Central/embriologia , Clonagem Molecular , DNA Complementar/metabolismo , Inibidores Enzimáticos/farmacologia , Epitopos , Éxons , Feminino , Biblioteca Gênica , Humanos , Imidazóis/farmacologia , Canais Iônicos/metabolismo , Rim/metabolismo , Masculino , Manganês/metabolismo , Dados de Sequência Molecular , Oligonucleotídeos Antissenso/farmacologia , Filogenia , Hipófise/metabolismo , Ligação Proteica , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Canais de Cátion TRPM , Tapsigargina/farmacologia , Fatores de Tempo , Distribuição Tecidual , Transfecção
6.
Brain Res Mol Brain Res ; 109(1-2): 95-104, 2002 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-12531519

RESUMO

The mammalian homologues of the Drosophila transient receptor potential (TRP) channel are plasma membrane proteins involved in the regulation of cellular Ca(2+) influx. These ion channels can be activated subsequent to either depletion of Ca(2+) from internal stores or through receptor-mediated processes. The mRNA expression patterns of several individual mammalian short transient receptor potential channels (TRPCs) have been described. Cross-comparisons between these data, however, are at best difficult predominantly due to the non-quantitative methods used. Furthermore there is limited data on the expression of TRPC family members in human tissues. In the present study we used a single technique, namely TaqMan real-time quantitative RT-PCR, to investigate the mRNA distribution of human TRPC1, TRPC3, TRPC4, TRPC5, TRPC6 and TRPC7 (hTRPCs) in discrete human brain areas, peripheral tissues as well as a panel of cell-lines. All hTRPCs studied were widely expressed within CNS and significant peripheral expression was often observed. Despite this, each channel exhibited a distinctive hallmark distribution profile. hTRPC1 was widely expressed in CNS and peripheral tissues, whereas hTRPC3 and hTRPC5 were predominantly expressed in tissues of CNS. hTRPC4 mRNA was detected in CNS and certain peripheral tissues such as bone, heart and prostate. hTRPC6 was homogeneously expressed throughout the CNS and peripheral tissues with the highest levels in placenta and lung. hTRPC7 mRNA was also broadly expressed in CNS as well as some peripheral tissues. The pattern of expression of the TRPCs was quite different in the various cell lines examined. TRPC3 and TRPC6 were selectively present in HEK-293 cells whilst TRPC1 was broadly distributed in the cell lines analyzed. In contrast TRPC4 and TRPC5 mRNAs were predominantly expressed in HK-2 and HEK-293 cell lines respectively. TRPC7 was selectively expressed in COS-1, COS-7 and HK-2 cell lines. These results show tissue- and cell-specific co-expression of multiple TRPC forms indicating widespread potential for formation of heteromeric channels. These data will be useful in the complex task of relating channel subunit composition to function in native cells.


Assuntos
Canais de Cálcio/metabolismo , Sistema Nervoso Central/metabolismo , RNA Mensageiro/metabolismo , Animais , Canais de Cálcio/genética , Linhagem Celular , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Dados de Sequência Molecular , Canais de Cátion TRPC , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA