Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(16): 11798-11806, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35930734

RESUMO

The COVID-19 pandemic has accelerated the growth of e-commerce and automated warehouses, vehicles, and robots and has created new options for grocery supply chains. We report and compare the greenhouse gas (GHG) emissions for a 36-item grocery basket transported along 72 unique paths from a centralized warehouse to the customer, including impacts of micro-fulfillment centers, refrigeration, vehicle automation, and last-mile transportation. Our base case is in-store shopping with last-mile transportation using an internal combustion engine (ICE) SUV (6.0 kg CO2e). The results indicate that emissions reductions could be achieved by e-commerce with micro-fulfillment centers (16-54%), customer vehicle electrification (18-42%), or grocery delivery (22-65%) compared to the base case. In-store shopping with an ICE pick-up truck has the highest emissions of all paths investigated (6.9 kg CO2e) while delivery using a sidewalk automated robot has the least (1.0 kg CO2e). Shopping frequency is an important factor for households to consider, e.g. halving shopping frequency can reduce GHG emissions by 44%. Trip chaining also offers an opportunity to reduce emissions with approximately 50% savings compared to the base case. Opportunities for grocers and households to reduce grocery supply chain carbon footprints are identified and discussed.


Assuntos
COVID-19 , Gases de Efeito Estufa , Pegada de Carbono , Efeito Estufa , Humanos , Pandemias , Meios de Transporte
2.
Environ Sci Technol ; 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34328327

RESUMO

Increased E-commerce and demand for contactless delivery during the COVID-19 pandemic have fueled interest in robotic package delivery. We evaluate life cycle greenhouse gas (GHG) emissions for automated suburban ground delivery systems consisting of a vehicle (last-mile) and a robot (final-50-feet). Small and large cargo vans (125 and 350 cubic feet; V125 and V350) with an internal combustion engine (ICEV) and battery electric (BEV) powertrains were assessed for three delivery scenarios: (i) conventional, human-driven vehicle with human delivery; (ii) partially automated, human-driven vehicle with robot delivery; and (iii) fully automated, connected automated vehicle (CAV) with robot delivery. The robot's contribution to life cycle GHG emissions is small (2-6%). Compared to the conventional scenario, full automation results in similar GHG emissions for the V350-ICEV but 10% higher for the V125-BEV. Conventional delivery with a V125-BEV provides the lowest GHG emissions, 167 g CO2e/package, while partially automated delivery with a V350-ICEV generates the most at 486 g CO2e/package. Fuel economy and delivery density are key parameters, and electrification of the vehicle and carbon intensity of the electricity have a large impact. CAV power requirements and efficiency benefits largely offset each other, and automation has a moderate impact on life cycle GHG emissions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA