Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Front Neurol ; 15: 1396520, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022733

RESUMO

Neurodegenerative and neuroinflammatory diseases, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, affect millions of people globally. As aging is a major risk factor for neurodegenerative diseases, the continuous increase in the elderly population across Western societies is also associated with a rising prevalence of these debilitating conditions. The complement system, a crucial component of the innate immune response, has gained increasing attention for its multifaceted involvement in the normal development of the central nervous system (CNS) and the brain but also as a pathogenic driver in several neuroinflammatory disease states. Although complement is generally understood as a liver-derived and blood or interstitial fluid operative system protecting against bloodborne pathogens or threats, recent research, particularly on the role of complement in the healthy and diseased CNS, has demonstrated the importance of locally produced and activated complement components. Here, we provide a succinct overview over the known beneficial and pathological roles of complement in the CNS with focus on local sources of complement, including a discussion on the potential importance of the recently discovered intracellularly active complement system for CNS biology and on infection-triggered neurodegeneration.

2.
Arterioscler Thromb Vasc Biol ; 44(7): 1512-1522, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38813699

RESUMO

The adaptive immune system plays an important role in the development and progression of atherosclerotic cardiovascular disease. B cells can have both proatherogenic and atheroprotective roles, making treatments aimed at modulating B cells important therapeutic targets. The innate-like B-cell response is generally considered atheroprotective, while the adaptive response is associated with mixed consequences for atherosclerosis. Additionally, interactions of B cells with components of the adaptive and innate immune system, including T cells and complement, also represent key points for therapeutic regulation. In this review, we discuss therapeutic approaches based on B-cell depletion, modulation of B-cell survival, manipulation of both the antibody-dependent and antibody-independent B-cell response, and emerging immunization techniques.


Assuntos
Imunidade Adaptativa , Linfócitos B , Doenças Cardiovasculares , Humanos , Linfócitos B/imunologia , Animais , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/terapia , Imunidade Inata , Aterosclerose/imunologia , Aterosclerose/terapia , Sobrevivência Celular
3.
Nat Rev Cardiol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600367

RESUMO

Cardiovascular diseases are the leading cause of death globally, and atherosclerosis is the major contributor to the development and progression of cardiovascular diseases. Immune responses have a central role in the pathogenesis of atherosclerosis, with the complement system being an acknowledged contributor. Chronic activation of liver-derived and serum-circulating canonical complement sustains endothelial inflammation and innate immune cell activation, and deposition of complement activation fragments on inflamed endothelial cells is a hallmark of atherosclerotic plaques. However, increasing evidence indicates that liver-independent, cell-autonomous and non-canonical complement activities are underappreciated contributors to atherosclerosis. Furthermore, complement activation can also have atheroprotective properties. These specific detrimental or beneficial contributions of the complement system to the pathogenesis of atherosclerosis are dictated by the location of complement activation and engagement of its canonical versus non-canonical functions in a temporal fashion during atherosclerosis progression. In this Review, we summarize the classical and the emerging non-classical roles of the complement system in the pathogenesis of atherosclerosis and discuss potential strategies for therapeutic modulation of complement for the prevention and treatment of atherosclerotic cardiovascular disease.

4.
Trends Immunol ; 45(4): 228-230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538487

RESUMO

Complement, traditionally perceived as a liver-derived and plasma-operative guardian against bloodborne pathogens, is increasingly recognized as a local and central player in tissue immunity. Two recent studies, by Xu et al. and Wu et al., validate this concept in the mouse gut, where extrahepatic, intestine-produced, and/or operative C3 protects against enteric infections.


Assuntos
Complemento C3 , Fígado , Animais , Camundongos
5.
Lancet ; 403(10424): 392-405, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-37979593

RESUMO

The complement system is recognised as a protector against blood-borne pathogens and a controller of immune system and tissue homoeostasis. However, dysregulated complement activity is associated with unwanted or non-resolving immune responses and inflammation, which induce or exacerbate the pathogenesis of a broad range of inflammatory and autoimmune diseases. Although the merit of targeting complement clinically has long been acknowledged, the overall complement drug approval rate has been modest. However, the success of the humanised anti-C5 antibody eculizumab in effectively treating paroxysmal nocturnal haemoglobinuria and atypical haemolytic syndrome has revitalised efforts to target complement therapeutically. Increased understanding of complement biology has led to the identification of novel targets for drug development that, in combination with advances in drug discovery and development technologies, has resulted in a surge of interest in bringing new complement therapeutics into clinical use. The rising number of approved drugs still almost exclusively target rare diseases, but the substantial pipeline of up-and-coming treatment options will possibly provide opportunities to also expand the clinical targeting of complement to common diseases.


Assuntos
Doenças Autoimunes , Hemoglobinúria Paroxística , Humanos , Inativadores do Complemento/farmacologia , Inativadores do Complemento/uso terapêutico , Proteínas do Sistema Complemento/fisiologia , Hemoglobinúria Paroxística/tratamento farmacológico , Descoberta de Drogas
7.
Immunity ; 56(9): 2036-2053.e12, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572656

RESUMO

Arginase 1 (Arg1), the enzyme catalyzing the conversion of arginine to ornithine, is a hallmark of IL-10-producing immunoregulatory M2 macrophages. However, its expression in T cells is disputed. Here, we demonstrate that induction of Arg1 expression is a key feature of lung CD4+ T cells during mouse in vivo influenza infection. Conditional ablation of Arg1 in CD4+ T cells accelerated both virus-specific T helper 1 (Th1) effector responses and its resolution, resulting in efficient viral clearance and reduced lung pathology. Using unbiased transcriptomics and metabolomics, we found that Arg1-deficiency was distinct from Arg2-deficiency and caused altered glutamine metabolism. Rebalancing this perturbed glutamine flux normalized the cellular Th1 response. CD4+ T cells from rare ARG1-deficient patients or CRISPR-Cas9-mediated ARG1-deletion in healthy donor cells phenocopied the murine cellular phenotype. Collectively, CD4+ T cell-intrinsic Arg1 functions as an unexpected rheostat regulating the kinetics of the mammalian Th1 lifecycle with implications for Th1-associated tissue pathologies.


Assuntos
Arginase , Influenza Humana , Animais , Humanos , Camundongos , Arginase/genética , Arginase/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Glutamina , Cinética , Pulmão/metabolismo , Mamíferos
8.
J Clin Immunol ; 43(8): 1840-1856, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37477760

RESUMO

Mutations in CD46 predispose to atypical hemolytic uremic syndrome (aHUS) with low penetrance. Factors driving immune-dysregulatory disease in individual mutation carriers have remained ill-understood. In addition to its role as a negative regulator of the complement system, CD46 modifies T cell-intrinsic metabolic adaptation and cytokine production. Comparative immunologic analysis of diseased vs. healthy CD46 mutation carriers has not been performed in detail yet. In this study, we comprehensively analyzed clinical, molecular, immune-phenotypic, cytokine secretion, immune-metabolic, and genetic profiles in healthy vs. diseased individuals carrying a rare, heterozygous CD46 mutation identified within a large single family. Five out of six studied individuals carried a CD46 gene splice-site mutation causing an in-frame deletion of 21 base pairs. One child suffered from aHUS and his paternal uncle manifested with adult-onset systemic lupus erythematosus (SLE). Three mutation carriers had no clinical evidence of CD46-related disease to date. CD4+ T cell-intrinsic CD46 expression was uniformly 50%-reduced but was comparable in diseased vs. healthy mutation carriers. Reconstitution experiments defined the 21-base pair-deleted CD46 variant as intracellularly-but not surface-expressed and haploinsufficient. Both healthy and diseased mutation carriers displayed reduced CD46-dependent T cell mitochondrial adaptation. Diseased mutation carriers had lower peripheral regulatory T cell (Treg) frequencies and carried potentially epistatic, private rare variants in other inborn errors of immunity (IEI)-associated proinflammatory genes, not found in healthy mutation carriers. In conclusion, low Treg and rare non-CD46 immune-gene variants may contribute to clinically manifest CD46 haploinsufficiency-associated immune-dysregulation.


Assuntos
Família , Haploinsuficiência , Adulto , Criança , Humanos , Nível de Saúde , Heterozigoto , Citocinas , Proteína Cofatora de Membrana/genética
9.
Immunity ; 56(8): 1809-1824.e10, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499656

RESUMO

Complement factor H (CFH) negatively regulates consumption of complement component 3 (C3), thereby restricting complement activation. Genetic variants in CFH predispose to chronic inflammatory disease. Here, we examined the impact of CFH on atherosclerosis development. In a mouse model of atherosclerosis, CFH deficiency limited plaque necrosis in a C3-dependent manner. Deletion of CFH in monocyte-derived inflammatory macrophages propagated uncontrolled cell-autonomous C3 consumption without downstream C5 activation and heightened efferocytotic capacity. Among leukocytes, Cfh expression was restricted to monocytes and macrophages, increased during inflammation, and coincided with the accumulation of intracellular C3. Macrophage-derived CFH was sufficient to dampen resolution of inflammation, and hematopoietic deletion of CFH in atherosclerosis-prone mice promoted lesional efferocytosis and reduced plaque size. Furthermore, we identified monocyte-derived inflammatory macrophages expressing C3 and CFH in human atherosclerotic plaques. Our findings reveal a regulatory axis wherein CFH controls intracellular C3 levels of macrophages in a cell-autonomous manner, evidencing the importance of on-site complement regulation in the pathogenesis of inflammatory diseases.


Assuntos
Aterosclerose , Complemento C3 , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Inflamação , Macrófagos/metabolismo
10.
Cell ; 186(13): 2802-2822.e22, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37220746

RESUMO

Systemic candidiasis is a common, high-mortality, nosocomial fungal infection. Unexpectedly, it has emerged as a complication of anti-complement C5-targeted monoclonal antibody treatment, indicating a critical niche for C5 in antifungal immunity. We identified transcription of complement system genes as the top biological pathway induced in candidemic patients and as predictive of candidemia. Mechanistically, C5a-C5aR1 promoted fungal clearance and host survival in a mouse model of systemic candidiasis by stimulating phagocyte effector function and ERK- and AKT-dependent survival in infected tissues. C5ar1 ablation rewired macrophage metabolism downstream of mTOR, promoting their apoptosis and enhancing mortality through kidney injury. Besides hepatocyte-derived C5, local C5 produced intrinsically by phagocytes provided a key substrate for antifungal protection. Lower serum C5a concentrations or a C5 polymorphism that decreases leukocyte C5 expression correlated independently with poor patient outcomes. Thus, local, phagocyte-derived C5 production licenses phagocyte antimicrobial function and confers innate protection during systemic fungal infection.


Assuntos
Antifúngicos , Candidíase , Animais , Camundongos , Complemento C5/metabolismo , Fagócitos/metabolismo
11.
Eur J Immunol ; 53(12): e2250042, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37120820

RESUMO

Recent rapid progress in key technological advances, including the broader accessibility of single-cell "omic" approaches, have allowed immunologists to gain important novel insights into the contributions of individual immune cells in protective immunity and immunopathologies. These insights also taught us that there is still much to uncover about the (cellular) networks underlying immune responses. For example, in the last decade, studies on a key component of innate immunity, the complement system, have defined intracellularly active complement (the complosome) as a key orchestrator of normal cell physiology. This added an unexpected facet to the biology of complement, which was long considered fully explored. Here, we will summarize succinctly the known activation modes and functions of the complosome and provide a perspective on the origins of intracellular complement. We will also make a case for extending assessments of the complotype, the individual inherited landscape of common variants in complement genes, to the complosome, and for reassessing patients with known serum complement deficiencies for complosome perturbations. Finally, we will discuss where we see current opportunities and hurdles for dissecting the compartmentalization of complement activities toward a better understanding of their contributions to cellular function in health and disease.


Assuntos
Proteínas do Sistema Complemento , Imunidade Inata , Humanos , Ativação do Complemento
12.
Nat Rev Nephrol ; 19(7): 426-439, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37055581

RESUMO

The complement system is a recognized pillar of host defence against infection and noxious self-derived antigens. Complement is traditionally known as a serum-effective system, whereby the liver expresses and secretes most complement components, which participate in the detection of bloodborne pathogens and drive an inflammatory reaction to safely remove the microbial or antigenic threat. However, perturbations in normal complement function can cause severe disease and, for reasons that are currently not fully understood, the kidney is particularly vulnerable to dysregulated complement activity. Novel insights into complement biology have identified cell-autonomous and intracellularly active complement - the complosome - as an unexpected central orchestrator of normal cell physiology. For example, the complosome controls mitochondrial activity, glycolysis, oxidative phosphorylation, cell survival and gene regulation in innate and adaptive immune cells, and in non-immune cells, such as fibroblasts and endothelial and epithelial cells. These unanticipated complosome contributions to basic cell physiological pathways make it a novel and central player in the control of cell homeostasis and effector responses. This discovery, together with the realization that an increasing number of human diseases involve complement perturbations, has renewed interest in the complement system and its therapeutic targeting. Here, we summarize the current knowledge about the complosome across healthy cells and tissues, highlight contributions from dysregulated complosome activities to human disease and discuss potential therapeutic implications.


Assuntos
Proteínas do Sistema Complemento , Inflamação , Humanos , Proteínas do Sistema Complemento/metabolismo , Rim/metabolismo
13.
J Immunol ; 210(2): 119-125, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36596217

RESUMO

The complement field has recently experienced a strong resurgence of interest because of the unexpected discovery of new complement functions extending complement's role beyond immunity and pathogen clearance, a growing list of diseases in which complement plays a role, and the proliferation of complement therapeutics. Importantly, although the majority of complement components in the circulation are generated by the liver and activated extracellularly, complement activation unexpectedly also occurs intracellularly across a broad range of cells. Such cell-autonomous complement activation can engage intracellular complement receptors, which then drive noncanonical cell-specific effector functions. Thus, much remains to be discovered about complement biology. In this brief review, we focus on novel noncanonical activities of complement in its "classic areas of operation" (kidney and brain biology, infection, and autoimmunity), with an outlook on the next generation of complement-targeted therapeutics.


Assuntos
Ativação do Complemento , Proteínas do Sistema Complemento
14.
Cell Rep ; 41(8): 111697, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417885

RESUMO

Pathway analysis is a key analytical stage in the interpretation of omics data, providing a powerful method for detecting alterations in cellular processes. We recently developed a sensitive and distribution-free statistical framework for multisample distribution testing, which we implement here in the open-source R package single-cell pathway analysis (SCPA). We demonstrate the effectiveness of SCPA over commonly used methods, generate a scRNA-seq T cell dataset, and characterize pathway activity over early cellular activation. This reveals regulatory pathways in T cells, including an intrinsic type I interferon system regulating T cell survival and a reliance on arachidonic acid metabolism throughout T cell activation. A systems-level characterization of pathway activity in T cells across multiple tissues also identifies alpha-defensin expression as a hallmark of bone-marrow-derived T cells. Overall, this work provides a widely applicable tool for single-cell pathway analysis and highlights regulatory mechanisms of T cells.


Assuntos
Análise de Célula Única , Software , Análise de Célula Única/métodos , Ativação Linfocitária , Sequenciamento do Exoma/métodos , Linfócitos T
15.
Trends Immunol ; 43(11): 886-900, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36216719

RESUMO

Caloric overconsumption in vertebrates promotes adipose and liver fat accumulation while perturbing the gut microbiome. This triad triggers pattern recognition receptor (PRR)-mediated immune cell signaling and sterile inflammation. Moreover, immune system activation perpetuates metabolic consequences, including the progression of nonalcoholic fatty liver disease (NAFLD) to nonalcoholic hepatic steatohepatitis (NASH). Recent findings show that sensing of nutrient overabundance disrupts the activity and homeostasis of the central cellular energy-generating organelle, the mitochondrion. In parallel, whether caloric excess-initiated PRR signaling and mitochondrial perturbations are coordinated to amplify this inflammatory process in NASH progression remains in question. We hypothesize that altered mitochondrial function, classic PRR signaling, and complement activation in response to nutrient overload together play an integrated role across the immune cell landscape, leading to liver inflammation and NASH progression.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado , Inflamação , Transdução de Sinais , Mitocôndrias/metabolismo , Nutrientes
16.
Nat Rev Immunol ; 22(2): 77-84, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34912108

RESUMO

Hyperactivation of the complement and coagulation systems is recognized as part of the clinical syndrome of COVID-19. Here we review systemic complement activation and local complement activation in response to the causative virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and their currently known relationships to hyperinflammation and thrombosis. We also provide an update on early clinical findings and emerging clinical trial evidence that suggest potential therapeutic benefit of complement inhibition in severe COVID-19.


Assuntos
COVID-19 , Proteínas do Sistema Complemento , Coagulação Sanguínea , COVID-19/imunologia , Ativação do Complemento , Humanos , Inflamação , Trombose
17.
Nat Immunol ; 23(1): 62-74, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34764490

RESUMO

The molecular mechanisms governing orderly shutdown and retraction of CD4+ type 1 helper T (TH1) cell responses remain poorly understood. Here we show that complement triggers contraction of TH1 responses by inducing intrinsic expression of the vitamin D (VitD) receptor and the VitD-activating enzyme CYP27B1, permitting T cells to both activate and respond to VitD. VitD then initiated the transition from pro-inflammatory interferon-γ+ TH1 cells to suppressive interleukin-10+ cells. This process was primed by dynamic changes in the epigenetic landscape of CD4+ T cells, generating super-enhancers and recruiting several transcription factors, notably c-JUN, STAT3 and BACH2, which together with VitD receptor shaped the transcriptional response to VitD. Accordingly, VitD did not induce interleukin-10 expression in cells with dysfunctional BACH2 or STAT3. Bronchoalveolar lavage fluid CD4+ T cells of patients with COVID-19 were TH1-skewed and showed de-repression of genes downregulated by VitD, from either lack of substrate (VitD deficiency) and/or abnormal regulation of this system.


Assuntos
Interferon gama/imunologia , Interleucina-10/imunologia , SARS-CoV-2/imunologia , Células Th1/imunologia , Vitamina D/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , COVID-19/imunologia , COVID-19/patologia , Complemento C3a/imunologia , Complemento C3b/imunologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ativação Linfocitária/imunologia , Receptores de Calcitriol/metabolismo , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologia , Transcrição Gênica/genética
18.
Sci Immunol ; 6(66): eabf2489, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34932384

RESUMO

While serum-circulating complement destroys invading pathogens, intracellularly active complement, termed the "complosome," functions as a vital orchestrator of cell-metabolic events underlying T cell effector responses. Whether intracellular complement is also nonredundant for the activity of myeloid immune cells is currently unknown. Here, we show that monocytes and macrophages constitutively express complement component (C) 5 and generate autocrine C5a via formation of an intracellular C5 convertase. Cholesterol crystal sensing by macrophages induced C5aR1 signaling on mitochondrial membranes, which shifted ATP production via reverse electron chain flux toward reactive oxygen species generation and anaerobic glycolysis to favor IL-1ß production, both at the transcriptional level and processing of pro­IL-1ß. Consequently, atherosclerosis-prone mice lacking macrophage-specific C5ar1 had ameliorated cardiovascular disease on a high-cholesterol diet. Conversely, inflammatory gene signatures and IL-1ß produced by cells in unstable atherosclerotic plaques of patients were normalized by a specific cell-permeable C5aR1 antagonist. Deficiency of the macrophage cell-autonomous C5 system also protected mice from crystal nephropathy mediated by folic acid. These data demonstrate the unexpected intracellular formation of a C5 convertase and identify C5aR1 as a direct modulator of mitochondrial function and inflammatory output from myeloid cells. Together, these findings suggest that the complosome is a contributor to the biologic processes underlying sterile inflammation and indicate that targeting this system could be beneficial in macrophage-dependent diseases, such as atherosclerosis.


Assuntos
Inflamação/imunologia , Interleucina-1beta/biossíntese , Macrófagos/imunologia , Receptor da Anafilatoxina C5a/imunologia , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor da Anafilatoxina C5a/deficiência
19.
Acta Neuropathol ; 142(5): 899-915, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34487221

RESUMO

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) characterized by varying degrees of secondary neurodegeneration. Retinal ganglion cells (RGC) are lost in MS in association with optic neuritis but the mechanisms of neuronal injury remain unclear. Complement component C3 has been implicated in retinal and cerebral synaptic pathology that may precede neurodegeneration. Herein, we examined post-mortem MS retinas, and then used a mouse model, experimental autoimmune encephalomyelitis (EAE), to examine the role of C3 in the pathogenesis of RGC loss associated with optic neuritis. First, we show extensive C3 expression in astrocytes (C3+/GFAP+ cells) and significant RGC loss (RBPMS+ cells) in post-mortem retinas from people with MS compared to retinas from non-MS individuals. A patient with progressive MS with a remote history of optic neuritis showed marked reactive astrogliosis with C3 expression in the inner retina extending into deeper layers in the affected eye more than the unaffected eye. To study whether C3 mediates retinal degeneration, we utilized global C3-/- EAE mice and found that they had less RGC loss and partially preserved neurites in the retina compared with C3+/+ EAE mice. C3-/- EAE mice had fewer axonal swellings in the optic nerve, reflecting reduced axonal injury, but had no changes in demyelination or T cell infiltration into the CNS. Using a C3-tdTomato reporter mouse line, we show definitive evidence of C3 expression in astrocytes in the retina and optic nerves of EAE mice. Conditional deletion of C3 in astrocytes showed RGC protection replicating the effects seen in the global knockouts. These data implicate astrocyte C3 expression as a critical mediator of retinal neuronal pathology in EAE and MS, and are consistent with recent studies showing C3 gene variants are associated with faster rates of retinal neurodegeneration in human disease.


Assuntos
Complemento C3/metabolismo , Esclerose Múltipla/patologia , Doenças Neuroinflamatórias/patologia , Células Ganglionares da Retina/patologia , Animais , Astrócitos/imunologia , Astrócitos/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Humanos , Camundongos , Esclerose Múltipla/imunologia , Degeneração Neural/imunologia , Degeneração Neural/patologia , Doenças Neuroinflamatórias/imunologia , Nervo Óptico/patologia , Neurite Óptica/imunologia , Neurite Óptica/patologia
20.
Trends Immunol ; 42(8): 706-722, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34266767

RESUMO

The integrin LFA-1 is crucial for T cell entry into mammalian lymph nodes and tissues, and for promoting interactions with antigen-presenting cells (APCs). However, it is increasingly evident that LFA-1 has additional key roles beyond the mere support of adhesion between T cells, the endothelium, and/or APCs. These include roles in homotypic T cell-T cell (T-T) communication, the induction of intracellular complement activity underlying Th1 effector cell polarization, and the support of long-lasting T cell memory. Here, we briefly summarize current knowledge of LFA-1 biology, discuss novel cytoskeletal regulators of LFA-1 functions, and review new aspects of LFA-1 mechanobiology that are relevant to its function in immunological synapses and in specific pathologies arising from LFA-1 dysregulation.


Assuntos
Molécula 1 de Adesão Intercelular , Antígeno-1 Associado à Função Linfocitária , Animais , Células Apresentadoras de Antígenos , Diferenciação Celular , Células Th1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA