Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Blood ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513239

RESUMO

Transient abnormal myelopoiesis (TAM) is a common complication in newborns with Down syndrome (DS). It commonly progresses to myeloid leukemia (ML-DS) after spontaneous regression. In contrast to the favorable prognosis of primary ML-DS, patients with refractory/relapsed ML-DS have poor outcomes. However, the molecular basis for refractoriness and relapse, and the full spectrum of driver mutations in ML-DS remain largely unknown. We conducted a genomic profiling study of 143 TAM, 204 ML-DS, and 34 non-DS acute megakaryoblastic leukemia cases, including 39 ML-DS cases analyzed by exome sequencing. Sixteen novel mutational targets were identified in ML-DS samples. Of these, inactivations of IRX1 (16.2%) and ZBTB7A (13.2%) were commonly implicated in the upregulation of the MYC pathway and were potential targets for ML-DS treatment with bromodomain-containing protein 4 inhibitors. Partial tandem duplications of RUNX1 on chromosome 21 were also found, specifically in ML-DS samples (13.7%), presenting its essential role in DS leukemia progression. Finally, in 177 patients with ML-DS treated following the same ML-DS protocol (the Japanese Pediatric Leukemia and Lymphoma Study Group AML-D05/D11), CDKN2A, TP53, ZBTB7A, and JAK2 alterations were associated with a poor prognosis. Patients with CDKN2A deletions (n = 7) or TP53 mutations (n = 4) had substantially lower 3-year event-free survival [28.6% vs. 90.5%, P < 0.001; 25.0% vs. 89.5%, P < 0.001] than those without these mutations. These findings considerably change the mutational landscape of ML-DS, provide new insights into the mechanisms of progression from TAM to ML-DS, and help identify new therapeutic targets and strategies for ML-DS.

2.
BMC Res Notes ; 13(1): 6, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900206

RESUMO

OBJECTIVES: Cell-culture studies reported that prokaryotic RNA molecules among the various microbe-associated molecular patterns (MAMPs) were uniquely present in live bacteria and were categorized as viability-associated MAMPs. They also reported that specific nucleotide modifications are instrumental in the discrimination between self and nonself RNAs. The aim of this study was to characterize the in vivo immune induction potential of prokaryotic and eukaryotic ribosomal RNAs (rRNAs) using zebrafish embryos as novel whole animal model system. Additionally, we aimed to test the possible role of rRNA modifications in immune recognition. RESULTS: We used three immune markers to evaluate the induction potential of prokaryotic rRNA derived from Escherichia coli and eukaryotic rRNAs from chicken (nonself) and zebrafish (self). Lipopolysaccharide (LPS) of Pseudomonas aeruginosa served as a positive control. E. coli rRNA had an induction potential equivalent to that of LPS. The zebrafish innate immune system could discriminate between self and nonself rRNAs. Between the nonself rRNAs, E. coli rRNA was more immunogenic than chicken rRNA. The in vitro transcript of zebrafish 18S rRNA gene without the nucleotide modifications was not recognized by its own immune system. Our data suggested that prokaryotic rRNA is immunostimulatory in vivo and could be useful as an adjuvant.


Assuntos
Embrião não Mamífero/imunologia , Imunidade Inata , Células Procarióticas/metabolismo , RNA Ribossômico/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/imunologia , Animais , Biomarcadores/metabolismo , Lipopolissacarídeos/imunologia , RNA Ribossômico 18S/genética , Transcrição Gênica
3.
Sci Rep ; 9(1): 18130, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792295

RESUMO

In this study, to investigate the secondary function of Rpl10a in zebrafish development, morpholino antisense oligonucleotides (MOs) were used to knock down the zebrafish ribosomal protein L10a (rpl10a). At 25 hpf (hours post-fertilization), embryos injected with the rpl10a MO showed an abnormal morphology, including short bodies, curved tails, and small yolk sac extensions. We observed pigment reductions, edema, larger yolk sacs, smaller eyes and smaller yolk sac extensions at 50 hpf. In addition, reductions in the expression of primordial germ cell (PGC) marker genes (nanos1 and vasa) were observed in rpl10a knockdown embryos. A rescue experiment using a rpl10a mRNA co-injection showed the recovery of the morphology and red blood cell production similar to wild-type. Moreover, the CRISPR-Cas9 system was used to edit the sequence of rpl10a exon 5, resulting in a homozygous 5-bp deletion in the zebrafish genome. The mutant embryos displayed a morphology similar to that of the knockdown animals. Furthermore, the loss of rpl10a function led to reduced expression of gata1, hbae3, and hbbe1 (erythroid synthesis) and increased tp53 expression. Overall, the results suggested that Rpl10a deficiency caused delays in embryonic development, as well as apoptosis and anemia, in zebrafish.


Assuntos
Embrião não Mamífero/anormalidades , Regulação da Expressão Gênica no Desenvolvimento , Hemoglobinas/genética , Proteínas de Ligação a RNA/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Sistemas CRISPR-Cas , RNA Helicases DEAD-box/genética , Eritropoese/genética , Fator de Transcrição GATA1/genética , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Células Germinativas/fisiologia , Oligonucleotídeos Antissenso , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo
4.
Pharmaceuticals (Basel) ; 12(4)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600948

RESUMO

Diamond-Blackfan anemia (DBA) is a rare bone marrow failure syndrome characterized by red blood cell aplasia. Currently, mutations in 19 ribosomal protein genes have been identified in patients. However, the pathogenic mechanism of DBA remains unknown. Recently, several DBA models were generated in zebrafish (Danio rerio) to elucidate the molecular pathogenesis of disease and to explore novel treatments. Zebrafish have strong advantages in drug discovery due to their rapid development and transparency during embryogenesis and their applicability to chemical screens. Together with mice, zebrafish have now become a powerful tool for studying disease mechanisms and drug discovery. In this review, we introduce recent advances in DBA drug development and discuss the usefulness of zebrafish as a disease model.

5.
Cell Rep ; 26(7): 1727-1733.e6, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759385

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease characterized by α-synuclein-positive inclusion bodies and loss of neurons, including dopaminergic neurons. Difficulty in replicating PD phenotypes using animal models partly limits the understanding of PD and the therapy required. Although PD is strongly associated with aging, most experimental animals may not exhibit age-related symptoms. Herein, we demonstrate that Nothobranchius furzeri, a rapidly aging teleost with a short life span, exhibits age-dependent degeneration of dopaminergic and noradrenergic neurons and progression of α-synuclein pathologies. These pathological phenotypes are similar to those observed in human patients with PD. Amelioration of the cell loss by genetic depletion of α-synuclein suggests that α-synuclein is not a bystander but a causative protein of neurodegeneration. N. furzeri can reveal mechanisms underlying PD, especially of the idiopathic form that affects a majority of patients with PD, including α-synuclein-dependent neurodegeneration, age-dependent phenotypes, and progression of α-synuclein pathology.


Assuntos
Dopamina/metabolismo , Neurônios/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/metabolismo , Animais , Modelos Animais de Doenças , Peixes , Fundulidae , Humanos
6.
J Steroid Biochem Mol Biol ; 185: 110-117, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30118815

RESUMO

Steroid sulfatase (STS) plays an important role in the regulation of steroid hormones. Metabolism of steroid hormones in zebrafish has been investigated, but the action of steroid sulfatase remains unknown. In this study, a zebrafish sts was cloned, expressed, purified, and characterized in comparison with the orthologous human enzyme. Enzymatic assays demonstrated that similar to human STS, zebrafish Sts was most active in catalyzing the hydrolysis of estrone-sulfate and estradiol-sulfate, among five steroid sulfates tested as substrates. Kinetic analyses revealed that the Km values of zebrafish Sts and human STS differed with respective substrates, but the catalytic efficiency as reflected by the Vmax/Km appeared comparable, except for DHEA-sulfate with which zebrafish Sts appeared less efficient. While zebrafish Sts was catalytically active at 28 °C, the enzyme appeared more active at 37 °C and with similar Km values to those determined at 28 °C. Assays performed in the presence of different divalent cations showed that the activities of both zebrafish and human STSs were stimulated by Ca2+, Mg2+, and Mn2+, and inhibited by Zn+2 and Fe2+. EMATE and STX64, two known mammalian steroid sulafatase inhibitors, were shown to be capable of inhibiting the activity of zebrafish Sts. Collectively, the results obtained indicated that zebrafish Sts exhibited enzymatic characteristics comparable to the human STS, suggesting that the physiological function of STS may be conserved between zebrafish and humans.


Assuntos
Sulfato de Desidroepiandrosterona/metabolismo , Estradiol/análogos & derivados , Estrona/análogos & derivados , Esteril-Sulfatase/genética , Esteril-Sulfatase/metabolismo , Sequência de Aminoácidos , Animais , Catálise , Cátions/metabolismo , Clonagem Molecular/métodos , Inibidores Enzimáticos/farmacologia , Estradiol/metabolismo , Estrona/metabolismo , Humanos , Esteril-Sulfatase/antagonistas & inibidores , Peixe-Zebra
7.
Am J Hum Genet ; 103(3): 440-447, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30146126

RESUMO

Inherited bone-marrow-failure syndromes (IBMFSs) include heterogeneous genetic disorders characterized by bone-marrow failure, congenital anomalies, and an increased risk of malignancy. Many lines of evidence have suggested that p53 activation might be central to the pathogenesis of IBMFSs, including Diamond-Blackfan anemia (DBA) and dyskeratosis congenita (DC). However, the exact role of p53 activation in each clinical feature remains unknown. Here, we report unique de novo TP53 germline variants found in two individuals with an IBMFS accompanied by hypogammaglobulinemia, growth retardation, and microcephaly mimicking DBA and DC. TP53 is a tumor-suppressor gene most frequently mutated in human cancers, and occasional germline variants occur in Li-Fraumeni cancer-predisposition syndrome. Most of these mutations affect the core DNA-binding domain, leading to compromised transcriptional activities. In contrast, the variants found in the two individuals studied here caused the same truncation of the protein, resulting in the loss of 32 residues from the C-terminal domain (CTD). Unexpectedly, the p53 mutant had augmented transcriptional activities, an observation not previously described in humans. When we expressed this mutant in zebrafish and human-induced pluripotent stem cells, we observed impaired erythrocyte production. These findings together with close similarities to published knock-in mouse models of TP53 lacking the CTD demonstrate that the CTD-truncation mutations of TP53 cause IBMFS, providing important insights into the previously postulated connection between p53 and IBMFSs.


Assuntos
Doenças da Medula Óssea/genética , Medula Óssea/patologia , Células Germinativas/patologia , Mutação/genética , Proteína Supressora de Tumor p53/genética , Adolescente , Adulto , Agamaglobulinemia/genética , Anemia de Diamond-Blackfan/genética , Animais , Pré-Escolar , Eritrócitos/patologia , Feminino , Transtornos do Crescimento/genética , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Lactente , Recém-Nascido , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem , Peixe-Zebra
8.
J Cardiovasc Dev Dis ; 5(2)2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29738469

RESUMO

Congenital heart disease (CHD) is a leading cause of death in children <1 year of age. Despite intense effort in the last 10 years, most CHDs (~70%) still have an unknown etiology. Conotruncal based defects, such as Tetralogy of Fallot (TOF), a common complex of devastating heart defects, typically requires surgical intervention in the first year of life. We reported that the noncoding transcriptome in myocardial tissue from children with TOF is characterized by significant variation in levels of expression of noncoding RNAs, and more specifically, a significant reduction in 12 small cajal body-associated RNAs (scaRNAs) in the right ventricle. scaRNAs are essential for the biochemical modification and maturation of small nuclear RNAs (spliceosomal RNAs), which in turn are critical components of the spliceosome. This is particularly important because we also documented that splicing of mRNAs that are critical for heart development was dysregulated in the heart tissue of infants with TOF. Furthermore, we went on to show, using the zebrafish model, that altering the expression of these same scaRNAs led to faulty mRNA processing and heart defects in the developing embryo. This review will examine how scaRNAs may influence spliceosome fidelity in exon retention during heart development and thus contribute to regulation of heart development.

9.
Biochem Biophys Res Commun ; 495(2): 1839-1845, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29225165

RESUMO

Mutations in genes encoding ribosomal proteins have been identified in Diamond-Blackfan anemia (DBA), a rare genetic disorder that presents with a prominent erythroid phenotype. TP53 has been implicated in the pathophysiology of DBA with ribosomal protein (RP) L11 playing a crucial role in the TP53 response. Interestingly, RPL11 also controls the transcriptional activity of c-Myc, an oncoprotein that positively regulates ribosome biogenesis. In the present study, we analyzed the consequences of rpl11 depletion on erythropoiesis and ribosome biogenesis in zebrafish. As expected, Rpl11-deficient zebrafish exhibited defects in ribosome biogenesis and an anemia phenotype. However, co-inhibition of Tp53 did not alleviate the erythroid aplasia in these fish. Next, we explored the role of c-Myc in RPL11-deficient cellular and animal models. c-Myc and its target nucleolar proteins showed upregulation and increased localization in the head region of Rpl11-deficient zebrafish, where the morphological abnormalities and tp53 expression were more pronounced. Interestingly, in blood cells derived from DBA patients with mutations in RPL11, the biogenesis of ribosomes was defective, but the expression level of c-Myc and its target nucleolar proteins was unchanged. The results suggest a model whereby RPL11 deficiency activates the synthesis of c-Myc target nucleolar proteins, which subsequently triggers a p53 response. These results further demonstrate that the induction of Tp53 mediates the morphological, but not erythroid, defects associated with RPL11 deficiency.


Assuntos
Anemia de Diamond-Blackfan/fisiopatologia , Proteínas Ribossômicas/deficiência , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/patologia , Animais , Modelos Animais de Doenças , Eritropoese/genética , Proteínas de Peixes/deficiência , Proteínas de Peixes/genética , Genes myc , Genes p53 , Humanos , Mutação , Processamento Pós-Transcricional do RNA , Proteínas Ribossômicas/genética , Peixe-Zebra
10.
J Steroid Biochem Mol Biol ; 174: 120-127, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28807679

RESUMO

5α-Cyprinol 27-sulfate is the major biliary bile salt present in cypriniform fish including the zebrafish (Danio rerio). The current study was designed to identify the zebrafish cytosolic sulfotransferase (Sult) enzyme(s) capable of sulfating 5α-cyprinol and to characterize the zebrafish 5α-cyprinol-sulfating Sults in comparison with human SULT2A1. Enzymatic assays using zebrafish homogenates showed 5α-cyprinol-sulfating activity. A systematic analysis, using a panel of recombinant zebrafish Sults, revealed two Sult2 subfamily members, Sult2st2 and Sult2st3, as major 5α-cyprinol-sulfating Sults. Both enzymes showed higher activities using 5α-cyprinol as the substrate, compared to their activity with DHEA, a representative substrate for mammalian SULT2 family members, particularly SULT2A1. pH-Dependence and kinetics experiments indicated that the catalytic properties of zebrafish Sult2 family members in mediating the sulfation of 5α-cyprinol were different from those of either zebrafish Sult3st4 or human SULT2A1. Collectively, these results imply that both Sult2st2 and Sult2st3 have evolved to sulfate specifically C27-bile alcohol, 5α-cyprinol, in Cypriniform fish, whereas the enzymatic characteristics of zebrafish Sult3 members, particularly Sult3st4, correlated with those of human SULT2A1.


Assuntos
Arilsulfotransferase/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Colestanóis/metabolismo , Ácidos Cólicos/metabolismo , Desidroepiandrosterona/metabolismo , Embrião não Mamífero , Humanos , Peixe-Zebra
11.
Nucleic Acids Res ; 45(9): 5501-5511, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28180296

RESUMO

Human telomeric RNA has been identified as a key component of the telomere machinery. Recently, the growing evidence suggests that the telomeric RNA forms G-quadruplex structures to play an important role in telomere protection and regulation. In the present studies, we developed a 19F NMR spectroscopy method to investigate the telomeric RNA G-quadruplex structures in vitro and in living cells. We demonstrated that the simplicity and sensitivity of 19F NMR approach can be used to directly observe the dimeric and two-subunits stacked G-quadruplexes in vitro and in living cells and quantitatively characterize the thermodynamic properties of the G-quadruplexes. By employing the 19F NMR in living cell experiment, we confirmed for the first time that the higher-order G-quadruplex exists in cells. We further demonstrated that telomere RNA G-quadruplexes are converted to the higher-order G-quadruplex under molecular crowding condition, a cell-like environment. We also show that the higher-order G-quadruplex has high thermal stability in crowded solutions. The finding provides new insight into the structural behavior of telomere RNA G-quadruplex in living cells. These results open new avenues for the investigation of G-quadruplex structures in vitro and in living cells.


Assuntos
Quadruplex G , Espectroscopia de Ressonância Magnética , RNA/química , Telômero/química , Animais , Sequência de Bases , Sobrevivência Celular , Flúor , Humanos , Substâncias Macromoleculares/metabolismo , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Temperatura , Termodinâmica , Xenopus laevis
12.
J Hum Genet ; 62(4): 473-480, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27928163

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder caused by survival motor neuron gene mutations. Variant forms of SMA accompanied by additional clinical presentations have been classified as atypical SMA and are thought to be caused by variants in as yet unidentified causative genes. Here, we presented the clinical findings of two siblings with an SMA variant followed by progressive cerebral atrophy, and the results of whole-exome sequencing analyses of the family quartet that was performed to identify potential causative variants. We identified two candidate homozygous missense variants, R942Q in the tubulin-folding cofactor D (TBCD) gene and H250Q in the bromo-adjacent homology domain and coiled-coil containing 1 (BAHCC1) gene, located on chromosome 17q25.3 with an interval of 1.4 Mbp. The in silico analysis of both variants suggested that TBCD rather than BAHCC1 was likely the pathogenic gene (TBCD sensitivity, 0.68; specificity, 0.97; BAHCC1 sensitivity, 1.00; specificity, 0.00). Thus, our results show that TBCD is a likely novel candidate gene for atypical SMA with progressive cerebral atrophy. TBCD is predicted to have important functions on tubulin integrity in motor neurons as well as in the central nervous system.


Assuntos
Encefalopatias/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas/genética , Atrofias Musculares Espinais da Infância/genética , Encefalopatias/fisiopatologia , Criança , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Homozigoto , Humanos , Neurônios Motores/patologia , Mutação de Sentido Incorreto , Linhagem , Atrofias Musculares Espinais da Infância/fisiopatologia
14.
Nucleic Acids Res ; 45(D1): D128-D134, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27794554

RESUMO

RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. The website has been subject to continuous improvements focusing on text and sequence similarity searches as well as genome browsing functionality. All RNAcentral data is provided for free and is available for browsing, bulk downloads, and programmatic access at http://rnacentral.org/.


Assuntos
Bases de Dados de Ácidos Nucleicos , RNA não Traduzido/química , Animais , Genômica , Humanos , Nucleotídeos/química , Análise de Sequência de RNA , Especificidade da Espécie
15.
Biochim Biophys Acta ; 1852(8): 1619-29, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25916634

RESUMO

Alternative splicing (AS) plays an important role in regulating mammalian heart development, but a link between misregulated splicing and congenital heart defects (CHDs) has not been shown. We reported that more than 50% of genes associated with heart development were alternatively spliced in the right ventricle (RV) of infants with tetralogy of Fallot (TOF). Moreover, there was a significant decrease in the level of 12 small cajal body-specific RNAs (scaRNAs) that direct the biochemical modification of specific nucleotides in spliceosomal RNAs. We sought to determine if scaRNA levels influence patterns of AS and heart development. We used primary cells derived from the RV of infants with TOF to show a direct link between scaRNA levels and splice isoforms of several genes that regulate heart development (e.g., GATA4, NOTCH2, DAAM1, DICER1, MBNL1 and MBNL2). In addition, we used antisense morpholinos to knock down the expression of two scaRNAs (scarna1 and snord94) in zebrafish and saw a corresponding disruption of heart development with an accompanying alteration in splice isoforms of cardiac regulatory genes. Based on these combined results, we hypothesize that scaRNA modification of spliceosomal RNAs assists in fine tuning the spliceosome for dynamic selection of mRNA splice isoforms. Our results are consistent with disruption of splicing patterns during early embryonic development leading to insufficient communication between the first and second heart fields, resulting in conotruncal misalignment and TOF. Our findings represent a new paradigm for determining the mechanisms underlying congenital cardiac malformations.


Assuntos
Processamento Alternativo/genética , Corpos Enovelados/genética , Coração/embriologia , Coração/crescimento & desenvolvimento , MicroRNAs/fisiologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Humanos , Lactente , Recém-Nascido , Vertebrados/embriologia , Vertebrados/genética , Vertebrados/crescimento & desenvolvimento , Peixe-Zebra
16.
RNA Biol ; 12(4): 426-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25849198

RESUMO

Poikiloderma with neutropenia (PN) is a rare inherited disorder characterized by poikiloderma, facial dysmorphism, pachyonychia, short stature and neutropenia. The molecular testing of PN patients has identified mutations in the C16orf57 gene, which encodes a protein referred to as USB1 (U Six Biogenesis 1). In this study, we developed a zebrafish model of PN by the microinjection of morpholino antisense oligos to suppress usb1 gene function. Severe morphological defects, including a bent tail, thin yolk extension and reduced body length, were predominant in the Usb1-suppressed embryos (morphants). We also observed significantly decreased number of neutrophils in the morphants by Sudan Black staining. Interestingly, the splicing of genes involved in neutrophil differentiation and development, such as mpx, ncf1, ela3l and npsn, was aberrant in the morphants. However, the splicing of haematopoietic precursors and erythroid-specific genes was unaltered. Importantly, the neutrophil defects were almost completely rescued by co-injection of ela3l mRNA, the most markedly affected gene in the morphants. Our study demonstrated a possible role of USB1 in modulating the tissue-specific gene splicing that eventually leads to the impaired development of neutrophils. This zebrafish model could serve as a valuable tool to investigate the causative role of USB1 in PN pathogenesis.


Assuntos
Diferenciação Celular/genética , Exorribonucleases/genética , Neutropenia/genética , Neutropenia/patologia , Neutrófilos/metabolismo , Splicing de RNA , Anormalidades da Pele/genética , Anormalidades da Pele/patologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Modelos Animais de Doenças , Exorribonucleases/metabolismo , Técnicas de Silenciamento de Genes , Morfolinos/metabolismo , Neutropenia/metabolismo , Neutrófilos/patologia , Oligonucleotídeos Antissenso/metabolismo , Anormalidades da Pele/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
17.
Br J Haematol ; 168(6): 854-64, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25424902

RESUMO

Diamond-Blackfan anaemia is a congenital bone marrow failure syndrome that is characterized by red blood cell aplasia. The disease has been associated with mutations or large deletions in 11 ribosomal protein genes including RPS7, RPS10, RPS17, RPS19, RPS24, RPS26, RPS29, RPL5, RPL11, RPL26 and RPL35A as well as GATA1 in more than 50% of patients. However, the molecular aetiology of many Diamond-Blackfan anaemia cases remains to be uncovered. To identify new mutations responsible for Diamond-Blackfan anaemia, we performed whole-exome sequencing analysis of 48 patients with no documented mutations/deletions involving known Diamond-Blackfan anaemia genes except for RPS7, RPL26, RPS29 and GATA1. Here, we identified a de novo splicing error mutation in RPL27 and frameshift deletion in RPS27 in sporadic patients with Diamond-Blackfan anaemia. In vitro knockdown of gene expression disturbed pre-ribosomal RNA processing. Zebrafish models of rpl27 and rps27 mutations showed impairments of erythrocyte production and tail and/or brain development. Additional novel mutations were found in eight patients, including RPL3L, RPL6, RPL7L1T, RPL8, RPL13, RPL14, RPL18A and RPL31. In conclusion, we identified novel germline mutations of two ribosomal protein genes responsible for Diamond-Blackfan anaemia, further confirming the concept that mutations in ribosomal protein genes lead to Diamond-Blackfan anaemia.


Assuntos
Anemia de Diamond-Blackfan/genética , Mutação em Linhagem Germinativa , Metaloproteínas/genética , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/genética , Anemia de Diamond-Blackfan/fisiopatologia , Animais , Pré-Escolar , Análise Mutacional de DNA/métodos , Eritropoese/genética , Exoma/genética , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , RNA Ribossômico/genética , Peixe-Zebra
18.
Int J Biochem Cell Biol ; 49: 1-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24417973

RESUMO

Diamond-Blackfan anemia is an inherited genetic disease caused by mutations in ribosomal protein genes. The disease is characterized by bone marrow failure, congenital anomalies, and a severe erythroid defect. The activation of the TP53 pathway has been suggested to be critical for the pathophysiology of Diamond-Blackfan anemia. While this pathway plays a role in the morphological defects that associate with ribosomal protein loss-of-function in animal models, its role in the erythroid defects has not been clearly established. To understand the specificity of erythroid defects in Diamond-Blackfan anemia, we knocked down five RP genes (two Diamond-Blackfan anemia-associated and three non-Diamond-Blackfan anemia-associated) in zebrafish and analyzed the effects on the developmental and erythroid phenotypes in the presence and absence of Tp53. The co-inhibition of Tp53 activity rescued the morphological deformities but did not alleviate the erythroid aplasia indicating that ribosomal protein deficiency causes erythroid failure in a Tp53-independent manner. Interestingly, treatment with L-Leucine or L-Arginine, amino acids that augment mRNA translation via mTOR pathway, rescued the morphological defects and resulted in a substantial recovery of erythroid cells. Our results suggest that altered translation because of impaired ribosome function could be responsible for the morphological and erythroid defects in ribosomal protein-deficient zebrafish.


Assuntos
Eritropoese/genética , Proteínas Ribossômicas/genética , Proteína Supressora de Tumor p53/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Animais , Arginina/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Contagem de Eritrócitos , Células Eritroides/efeitos dos fármacos , Células Eritroides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Leucina/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ribossômicas/deficiência , Ribossomos/genética , Ribossomos/metabolismo , Sirolimo/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
19.
BMC Res Notes ; 6: 426, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24148649

RESUMO

BACKGROUND: Small nucleolar RNAs (snoRNAs) are a class of non-coding RNAs that guide the modification of specific nucleotides in ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). Although most non-coding RNAs undergo post-transcriptional modifications prior to maturation, the functional significance of these modifications remains unknown. Here, we introduce the snoRNA orthological gene database (snOPY) as a tool for studying RNA modifications. FINDINGS: snOPY provides comprehensive information about snoRNAs, snoRNA gene loci, and target RNAs. It also contains data for orthologues from various species, which enables users to analyze the evolution of snoRNA genes. In total, 13,770 snoRNA genes, 10,345 snoRNA gene loci, and 133 target RNAs have been registered. Users can search and access the data efficiently using a simple web interface with a series of internal links. snOPY is freely available on the web at http://snoopy.med.miyazaki-u.ac.jp. CONCLUSIONS: snOPY is the database that provides information about the small nucleolar RNAs and their orthologues. It will help users to study RNA modifications and snoRNA gene evolution.


Assuntos
Bases de Dados Genéticas , RNA Mensageiro/genética , RNA Ribossômico/genética , RNA Nucleolar Pequeno/genética , Software , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Evolução Molecular , Loci Gênicos , Humanos , Internet , Dados de Sequência Molecular , RNA Nucleolar Pequeno/classificação , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA