Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
1.
Redox Biol ; 74: 103228, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38865902

RESUMO

Therapy-induced senescent tumor cells have emerged as significant drivers of tumor recurrence and disease relapse. Interestingly, reactive oxygen species (ROS) production and its associated redox signaling networks are intertwined with initiation and establishment of therapy-induced senescence. Therapy-induced senescent cells influence neighboring cells and the tumor microenvironment via their bioactive secretome known as the senescence-associated secretory phenotype (SASP). The intracellular effects of ROS are dose and context-dependent. Under normal physiological conditions, ROS is involved in various signalling pathways and cellular processes important for maintenance of cellular homeostasis, such as redox balance, stress response, inflammatory signalling, cell proliferation and cell death among others. However excess ROS accompanied by a pro-oxidant microenvironment can engender oxidative DNA damage, triggering cellular senescence. In this review, we discuss the role of ROS and the redox state dynamics in fine-tuning homeostatic processes that drive therapy-induced cell fate towards senescence establishment, as well as their influence in stimulating inflammatory signalling and SASP production. We also offer insights into interventional strategies, specifically senotherapeutics, that could potentially leverage on modulation of redox and antioxidant pathways. Lastly, we evaluate possible implications of redox rewiring during escape from therapy-induced senescence, an emerging area of research. We envision that examining therapy-induced senescence through the redox lens, integrated with time-resolved single-cell RNA sequencing combined with spatiotemporal multi-omics, could further enhance our understanding of its functional heterogeneity. This could aid identification of targetable signalling nodes to reduce disease relapse, as well as inform strategies for development of broad-spectrum senotherapeutics. Overall, our review aims to delineate redox-driven mechanisms which contribute to the biology of therapy-induced senescence and beyond, while highlighting implications for tumor initiation and recurrence.


Assuntos
Senescência Celular , Oxirredução , Espécies Reativas de Oxigênio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo Secretor Associado à Senescência , Animais , Estresse Oxidativo , Microambiente Tumoral , Dano ao DNA
2.
Nat Aging ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898237

RESUMO

Clocks that measure biological age should predict all-cause mortality and give rise to actionable insights to promote healthy aging. Here we applied dimensionality reduction by principal component analysis to clinical data to generate a clinical aging clock (PCAge) identifying signatures (principal components) separating healthy and unhealthy aging trajectories. We found signatures of metabolic dysregulation, cardiac and renal dysfunction and inflammation that predict unsuccessful aging, and we demonstrate that these processes can be impacted using well-established drug interventions. Furthermore, we generated a streamlined aging clock (LinAge), based directly on PCAge, which maintains equivalent predictive power but relies on substantially fewer features. Finally, we demonstrate that our approach can be tailored to individual datasets, by re-training a custom clinical clock (CALinAge), for use in the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE) study of caloric restriction. Our analysis of CALERIE participants suggests that 2 years of mild caloric restriction significantly reduces biological age. Altogether, we demonstrate that this dimensionality reduction approach, through integrating different biological markers, can provide targets for preventative medicine and the promotion of healthy aging.

3.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746230

RESUMO

Humans are living longer, but this is accompanied by an increased incidence of age-related chronic diseases. Many of these diseases are influenced by age-associated metabolic dysregulation, but how metabolism changes in multiple organs during aging in males and females is not known. Answering this could reveal new mechanisms of aging and age-targeted therapeutics. In this study, we describe how metabolism changes in 12 organs in male and female mice at 5 different ages. Organs show distinct patterns of metabolic aging that are affected by sex differently. Hydroxyproline shows the most consistent change across the dataset, decreasing with age in 11 out of 12 organs investigated. We also developed a metabolic aging clock that predicts biological age and identified alpha-ketoglutarate, previously shown to extend lifespan in mice, as a key predictor of age. Our results reveal fundamental insights into the aging process and identify new therapeutic targets to maintain organ health.

4.
Elife ; 122024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567944

RESUMO

Aging and senescence are characterized by pervasive transcriptional dysfunction, including increased expression of transposons and introns. Our aim was to elucidate mechanisms behind this increased expression. Most transposons are found within genes and introns, with a large minority being close to genes. This raises the possibility that transcriptional readthrough and intron retention are responsible for age-related changes in transposon expression rather than expression of autonomous transposons. To test this, we compiled public RNA-seq datasets from aged human fibroblasts, replicative and drug-induced senescence in human cells, and RNA-seq from aging mice and senescent mouse cells. Indeed, our reanalysis revealed a correlation between transposons expression, intron retention, and transcriptional readthrough across samples and within samples. Both intron retention and readthrough increased with aging or cellular senescence and these transcriptional defects were more pronounced in human samples as compared to those of mice. In support of a causal connection between readthrough and transposon expression, analysis of models showing induced transcriptional readthrough confirmed that they also show elevated transposon expression. Taken together, our data suggest that elevated transposon reads during aging seen in various RNA-seq dataset are concomitant with multiple transcriptional defects. Intron retention and transcriptional readthrough are the most likely explanation for the expression of transposable elements that lack a functional promoter.


Assuntos
Envelhecimento , Elementos de DNA Transponíveis , Animais , Camundongos , Humanos , Idoso , Íntrons , RNA-Seq , Envelhecimento/genética , Regiões Promotoras Genéticas , Elementos de DNA Transponíveis/genética
5.
Ageing Res Rev ; 97: 102293, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574864

RESUMO

With geroscience research evolving at a fast pace, the need arises for human randomized controlled trials to assess the efficacy of geroprotective interventions to prevent age-related adverse outcomes, disease, and mortality in normative aging cohorts. However, to confirm efficacy requires a long-term and costly approach as time to the event of morbidity and mortality can be decades. While this could be circumvented using sensitive biomarkers of aging, current molecular, physiological, and digital endpoints require further validation. In this review, we discuss how collecting real-world evidence (RWE) by obtaining health data that is amenable for collection from large heterogeneous populations in a real-world setting can help speed up validation of geroprotective interventions. Further, we propose inclusion of quality of life (QoL) data as a biomarker of aging and candidate endpoint for geroscience clinical trials to aid in distinguishing healthy from unhealthy aging. We highlight how QoL assays can aid in accelerating data collection in studies gathering RWE on the geroprotective effects of repurposed drugs to support utilization within healthy longevity medicine. Finally, we summarize key metrics to consider when implementing QoL assays in studies, and present the short-form 36 (SF-36) as the most well-suited candidate endpoint.


Assuntos
Qualidade de Vida , Humanos , Envelhecimento/psicologia , Envelhecimento/fisiologia , Geriatria/métodos , Ensaios Clínicos como Assunto/métodos , Determinação de Ponto Final/métodos
6.
Aging Cell ; 23(4): e14099, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38317404

RESUMO

Although the two-dose mRNA vaccination regime provides protection against SARS-CoV-2, older adults have been shown to exhibit poorer vaccination responses. In addition, the role of vaccine-induced T-cell responses is not well characterised. We aim to assess the impact of age on immune responses after two doses of the BNT162b2 mRNA vaccine, focussing on antigen-specific T-cells. A prospective 3-month study was conducted on 15 young (median age 31 years, interquartile range (IQR) 25-35 years) and 14 older adults (median age 72 years, IQR 70-73 years). We assessed functional, neutralising antibody responses against SARS-CoV-2 variants using ACE-2 inhibition assays, and changes in B and T-cell subsets by high-dimensional flow cytometry. Antigen-specific T-cell responses were also quantified by intracellular cytokine staining and flow cytometry. Older adults had attenuated T-helper (Th) response to vaccination, which was associated with weaker antibody responses and decreased SARS-CoV-2 neutralisation. Antigen-specific interferon-γ (IFNγ)-secreting CD4+ T-cells to wild-type and Omicron antigens increased in young adults, which was strongly positively correlated with their neutralising antibody responses. Conversely, this relationship was negative in older adults. Hence, older adults' relative IFNγ-secreting CD4+ T cell deficiency might explain their poorer COVID-19 vaccination responses. Further exploration into the aetiology is needed and would be integral in developing novel vaccination strategies and improving infection outcomes in older adults.


Assuntos
COVID-19 , Interferon gama , Adulto Jovem , Humanos , Idoso , Adulto , Linfócitos T CD4-Positivos , Vacinas contra COVID-19 , Vacina BNT162 , Estudos Prospectivos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Anticorpos Neutralizantes , Anticorpos Antivirais
7.
Cell Metab ; 36(4): 793-807.e5, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38378001

RESUMO

Aging is underpinned by pronounced metabolic decline; however, the drivers remain obscure. Here, we report that IgG accumulates during aging, particularly in white adipose tissue (WAT), to impair adipose tissue function and metabolic health. Caloric restriction (CR) decreases IgG accumulation in WAT, whereas replenishing IgG counteracts CR's metabolic benefits. IgG activates macrophages via Ras signaling and consequently induces fibrosis in WAT through the TGF-ß/SMAD pathway. Consistently, B cell null mice are protected from aging-associated WAT fibrosis, inflammation, and insulin resistance, unless exposed to IgG. Conditional ablation of the IgG recycling receptor, neonatal Fc receptor (FcRn), in macrophages prevents IgG accumulation in aging, resulting in prolonged healthspan and lifespan. Further, targeting FcRn by antisense oligonucleotide restores WAT integrity and metabolic health in aged mice. These findings pinpoint IgG as a hidden culprit in aging and enlighten a novel strategy to rejuvenate metabolic health.


Assuntos
Tecido Adiposo , Envelhecimento , Camundongos , Animais , Envelhecimento/metabolismo , Tecido Adiposo Branco/metabolismo , Camundongos Knockout , Fibrose , Imunoglobulina G
8.
Nat Med ; 30(2): 360-372, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355974

RESUMO

The search for biomarkers that quantify biological aging (particularly 'omic'-based biomarkers) has intensified in recent years. Such biomarkers could predict aging-related outcomes and could serve as surrogate endpoints for the evaluation of interventions promoting healthy aging and longevity. However, no consensus exists on how biomarkers of aging should be validated before their translation to the clinic. Here, we review current efforts to evaluate the predictive validity of omic biomarkers of aging in population studies, discuss challenges in comparability and generalizability and provide recommendations to facilitate future validation of biomarkers of aging. Finally, we discuss how systematic validation can accelerate clinical translation of biomarkers of aging and their use in gerotherapeutic clinical trials.


Assuntos
Longevidade , Projetos de Pesquisa , Biomarcadores , Consenso
9.
JAMIA Open ; 7(1): ooae003, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38283885

RESUMO

Objectives: Since the 1970s, a plethora of tools have been introduced to support the medication use process. However, automation initiatives to assist pharmacists in prospectively reviewing medication orders are lacking. The review of many medications may be protocolized and implemented in an algorithmic fashion utilizing discrete data from the electronic health record (EHR). This research serves as a proof of concept to evaluate the capability and effectiveness of an electronic prospective medication order review (EPMOR) system compared to pharmacists' review. Materials and methods: A subset of the most frequently verified medication orders were identified for inclusion. A team of clinical pharmacist experts developed best-practice EPMOR criteria. The established criteria were incorporated into conditional logic built within the EHR. Verification outcomes from the pharmacist (human) and EPMOR (automation) were compared. Results: Overall, 13 404 medication orders were included. Of those orders, 13 133 passed pharmacist review, 7388 of which passed EPMOR. A total of 271 medication orders failed pharmacist review due to order modification or discontinuation, 105 of which passed EPMOR. Of the 105 orders, 19 were duplicate orders correctly caught by both EPMOR and pharmacists, but the opposite duplicate order was rejected, 51 orders failed due to scheduling changes. Discussion: This simulation was capable of effectively discriminating and triaging orders. Protocolization and automation of the prospective medication order review process in the EHR appear possible using clinically driven algorithms. Conclusion: Further research is necessary to refine such algorithms to maximize value, improve efficiency, and minimize safety risks in preparation for the implementation of fully automated systems.

10.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260683

RESUMO

Folate is a vitamin required for cell growth and is present in fortified foods in the form of folic acid to prevent congenital abnormalities. The impact of low folate status on life-long health is poorly understood. We found that limiting folate levels with the folate antagonist methotrexate increased the lifespan of yeast and worms. We then restricted folate intake in aged mice and measured various health metrics, metabolites, and gene expression signatures. Limiting folate intake decreased anabolic biosynthetic processes in mice and enhanced metabolic plasticity. Despite reduced serum folate levels in mice with limited folic acid intake, these animals maintained their weight and adiposity late in life, and we did not observe adverse health outcomes. These results argue that the effectiveness of folate dietary interventions may vary depending on an individual's age and sex. A higher folate intake is advantageous during the early stages of life to support cell divisions needed for proper development. However, a lower folate intake later in life may result in healthier aging.

11.
J Voice ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38195333

RESUMO

BACKGROUND: The prevalence of voice disorders for people aged >65 years is four times higher than for the population at large. The most common cause of dysphonia in this group is presbyphonia, the preferred first-line treatment for which is voice therapy with a speech-language pathologist. This systematic review seeks to identify how voice therapy affects multidimensional voice outcomes in people with presbyphonia. METHODS: A systematic search of CINAHL, Embase, Emcare, MEDLINE, and Google Scholar was conducted in March 2023. Comparative and noncomparative studies of voice therapy in participants aged >50 years with presbyphonia were considered for inclusion. No limitations were placed on date or language of publication. Study quality and risk of bias were assessed with the Cochrane Risk of Bias 2 tool and the Methodological Index for Non-Randomized Studies. Subgroup analysis was used to compare studies based on participant sex, intervention duration, study design, and intervention content. Interventions were specified using the Rehabilitation Treatment Specification System (RTSS) employing a consensus methodology among reviewers. The results were synthesized utilizing meta-analysis when outcomes were adequately specified and narrative analysis when they were not. RESULTS: Twenty-three studies were included with 1050 subjects (mean age: 72.5 ±â€¯8.6 years; 51% female). The most reported intervention was vocal function exercises. Per the RTSS, 14 interventions employed a predominantly Organ Functions approach, and the 14 remaining interventions employed a Skills & Habits approach. Meta-analysis confirmed posttherapy improvement in patient-related outcome measures of 0.93 standard mean difference (P < 0.00001, 95% confidence interval [CI]: 0.70-1.17); studies with predominantly males and with longer treatment periods were associated with larger improvements, while randomized controlled trials reported more modest improvements. Meta-analysis also identified a mean posttherapy increase in maximum phonation time (MPT) of 5.37 seconds (P < 0.00001, 95% CI: 3.52-7.22). Treatments with an Organ Functions focus resulted in greater gains in MPT than those with a Skills & Habits focus (7.52 seconds versus 2.90 seconds). Finally, meta-analysis identified reductions in acoustic perturbation measures (jitter: 0.62%, P < 0.001, 95% CI: 0.26%-0.97%; shimmer 1.05%, P < 0.00001, 95% CI: 0.67%-1.44%). Narrative synthesis further identified improvement in auditory-perceptual voice quality in all active treatment groups as well as improved glottal function in most studies that reported this. CONCLUSIONS: Despite the uncertainty around internal validity introduced by the inclusion of a wide range of study designs, there is convincing evidence that voice therapy for presbyphonia results in significant improvement in patient-reported, aerodynamic, acoustic, and expert-rated voice outcomes. Treatments with an Organ Functions focus may better address the underlying physiological deficits of presbyphonia, although future comparative studies with multidimensional voice assessment are warranted.

12.
Geroscience ; 46(1): 219-239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37851316

RESUMO

Functional decline of physiological systems during ageing leads to age-related diseases. Dietary glycine increases healthy lifespan in model organisms and might decrease inflammation in humans, suggesting its geroprotective potential. This review summarises the evidence of glycine administration on the characteristics of eleven physiological systems in adult humans. Databases were searched using key search terms: 'glycine', 'adult', 'supplementation'/ 'administration'/ 'ingestion'/ 'treatment'. Glycine was administered to healthy and diseased populations (18 and 34 studies) for up to 14 days and 4 months, respectively. The nervous system demonstrated the most positive effects, including improved psychiatric symptoms from longer-term glycine administration in psychiatric populations. While longer-term glycine administration improved sleep in healthy populations, these studies had small sample sizes with a high risk of bias. Larger and long-term studies with more robust study designs in healthy populations to examine the effects of glycine administration on preventing, delaying or reversing the ageing process are warranted.


Assuntos
Suplementos Nutricionais , Glicina , Nível de Saúde , Humanos , Glicina/administração & dosagem
13.
J Voice ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37957073

RESUMO

OBJECTIVES: Positive expiratory pressure (PEP) devices have become an additional therapeutic approach for treating voice disorders. Similar to water resistance therapy (WRT), phonation in a PEP device introduces a secondary source of vibration within the vocal tract. This investigation aimed to compare the effects of phonation using a PEP device and silicone tube phonation (STP) commonly used in WRT on the vocal mechanism during phonation. METHODS: Three normophonic subjects participated in the study. High-speed videoendoscopy, pressure, airflow, electroglottography, and acoustic recordings were collected. RESULTS: The results demonstrated that phonation using both the PEP device and silicone tube induced alterations in glottal behavior. The PEP device produced more pronounced and consistent pressure oscillations, impacting the glottal cycle and influencing parameters including contact quotient (CQ), fundamental frequency, glottal area, pressure, and airflow. The regular vibratory mechanism of the PEP device systematically modified the glottal cycle. In STP, regular bubbling at lower depths of submersion produced higher CQ values, supporting the efficacy of deep bubbling exercises for inducing glottal adduction. CONCLUSIONS: The findings suggest that phonation using PEP devices has a more pronounced impact on the vocal tract and glottis. It also provides a stronger massage effect that directly affects the glottal source. Phonation with a silicone tube produces similar results, although to a lesser extent and with lower regularity. These findings offer guidance in the selection of voice therapy devices.

14.
Cell ; 186(18): 3758-3775, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37657418

RESUMO

With the rapid expansion of aging biology research, the identification and evaluation of longevity interventions in humans have become key goals of this field. Biomarkers of aging are critically important tools in achieving these objectives over realistic time frames. However, the current lack of standards and consensus on the properties of a reliable aging biomarker hinders their further development and validation for clinical applications. Here, we advance a framework for the terminology and characterization of biomarkers of aging, including classification and potential clinical use cases. We discuss validation steps and highlight ongoing challenges as potential areas in need of future research. This framework sets the stage for the development of valid biomarkers of aging and their ultimate utilization in clinical trials and practice.


Assuntos
Envelhecimento , Longevidade , Humanos , Biomarcadores
15.
Elife ; 122023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37769126

RESUMO

Intermittent fasting (IF) has been shown to reduce cardiovascular risk factors in both animals and humans, and can protect the heart against ischemic injury in models of myocardial infarction. However, the underlying molecular mechanisms behind these effects remain unclear. To shed light on the molecular and cellular adaptations of the heart to IF, we conducted comprehensive system-wide analyses of the proteome, phosphoproteome, and transcriptome, followed by functional analysis. Using advanced mass spectrometry, we profiled the proteome and phosphoproteome of heart tissues obtained from mice that were maintained on daily 12- or 16 hr fasting, every-other-day fasting, or ad libitum control feeding regimens for 6 months. We also performed RNA sequencing to evaluate whether the observed molecular responses to IF occur at the transcriptional or post-transcriptional levels. Our analyses revealed that IF significantly affected pathways that regulate cyclic GMP signaling, lipid and amino acid metabolism, cell adhesion, cell death, and inflammation. Furthermore, we found that the impact of IF on different metabolic processes varied depending on the length of the fasting regimen. Short IF regimens showed a higher correlation of pathway alteration, while longer IF regimens had an inverse correlation of metabolic processes such as fatty acid oxidation and immune processes. Additionally, functional echocardiographic analyses demonstrated that IF enhances stress-induced cardiac performance. Our systematic multi-omics study provides a molecular framework for understanding how IF impacts the heart's function and its vulnerability to injury and disease.


Assuntos
Jejum Intermitente , Multiômica , Humanos , Camundongos , Animais , Proteoma , Jejum/fisiologia , Metabolismo Energético
16.
Post Reprod Health ; 29(3): 143-147, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37625800

RESUMO

AIM: A novel method of providing education and support to GP's was developed. The goal was to create a rapidly accessed peer advisory community to empower GP HRT prescribing. METHOD: A core group of doctors with special expertise in HRT were assembled on a GP interest group on the Telegram messaging platform. It is called 'HRT prescribers', an educational community with entrance by peer invitation. Most are GPs and number between 800 and 1000. Members post clinical questions and receive evidence-based responses to their dilemmas. RESULTS: A survey of members was overwhelmingly positive. 98% agreed the group empowered them to be confident and feel supported in their HRT prescribing. 90% agreed the group helped improve access to HRT for women who needed it in their practice. CONCLUSION: This project developed, with the cooperation of specialists, a cost-effective rapid method of educating and empowering GP's to be supported to safely treat their patients in their menopause transition. With further support and development, we believe it is the model that could be adopted in many countries.


Assuntos
Emoções , Menopausa , Humanos , Feminino , Irlanda
17.
Nutrients ; 15(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571385

RESUMO

There is a lack of data on the adequacy of nutrient intake and prevalence of malnutrition risk in Asian populations. The aim was to report on the nutrient intake and prevalence of malnutrition risk in a community sample of older adults in Singapore. Analysis was performed on 738 (n = 206 male, n = 532 male, aged 67.6 ± 6.0 years) adults 60 years and above. Intakes of macro- and micronutrients were evaluated against the Recommended Dietary Allowances (RDAs). Malnutrition risk was assessed using the Nutrition Screening Initiative Determine Your Nutritional Health checklist. It was found that 90.5% older adults exceeded the sugar intake, 68.5% males and 57.1% females exceeded the intake limit for saturated fat, and 33% males had inadequate dietary fiber intake when compared to the RDAs. Inadequate dietary calcium intake was found in 49.5% males and 55.3% females. There were 22.3% of older adults at moderate to high malnutrition risk. Singaporean older adults need to reduce their dietary intakes of sugar and saturated fat and increase their intakes in dietary fiber and calcium. Current findings provide public health awareness on the importance of healthy eating and will facilitate decision making by health promotors to deliver targeted nutrition care programs.


Assuntos
Envelhecimento Saudável , Desnutrição , Feminino , Humanos , Masculino , Idoso , Estudos de Coortes , Dieta , Ingestão de Energia , Desnutrição/epidemiologia , Ingestão de Alimentos , Fibras na Dieta , Micronutrientes , Ácidos Graxos , Açúcares
19.
bioRxiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398007

RESUMO

We report here that expression of the ribosomal protein, RPL22, is frequently reduced in human myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML); reduced RPL22 expression is associated with worse outcomes. Mice null for Rpl22 display characteristics of an MDS-like syndrome and develop leukemia at an accelerated rate. Rpl22-deficient mice also display enhanced hematopoietic stem cell (HSC) self-renewal and obstructed differentiation potential, which arises not from reduced protein synthesis but from increased expression of the Rpl22 target, ALOX12, an upstream regulator of fatty acid oxidation (FAO). The increased FAO mediated by Rpl22-deficiency also persists in leukemia cells and promotes their survival. Altogether, these findings reveal that Rpl22 insufficiency enhances the leukemia potential of HSC via non-canonical de-repression of its target, ALOX12, which enhances FAO, a process that may serve as a therapeutic vulnerability of Rpl22 low MDS and AML leukemia cells. Highlights: RPL22 insufficiency is observed in MDS/AML and is associated with reduced survivalRpl22-deficiency produces an MDS-like syndrome and facilitates leukemogenesisRpl22-deficiency does not impair global protein synthesis by HSCRpl22 controls leukemia cell survival by non-canonical regulation of lipid oxidation eTOC: Rpl22 controls the function and transformation potential of hematopoietic stem cells through effects on ALOX12 expression, a regulator of fatty acid oxidation.

20.
FASEB J ; 37(8): e23067, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37401900

RESUMO

Age-induced impairments in learning and memory are in part caused by changes to hippocampal synaptic plasticity during aging. The p75 neurotrophin receptor (p75NTR ) and mechanistic target of rapamycin (mTOR) are implicated in synaptic plasticity processes. mTOR is also well known for its involvement in aging. Recently, p75NTR and mTOR were shown to be mechanistically linked, and that p75NTR mediates age-induced impairment of hippocampal synaptic plasticity. Yet the consequences of p75NTR -mTOR interaction on hippocampal synaptic plasticity, and the role of mTOR in age-induced cognitive decline, are unclear. In this study, we utilize field electrophysiology to study the effects of mTOR inhibition and activation on long-term potentiation (LTP) in male young and aged wild-type (WT) mice. We then repeated the experiments on p75NTR knockout mice. The results demonstrate that mTOR inhibition blocks late-LTP in young WT mice but rescues age-related late-LTP impairment in aged WT mice. mTOR activation suppresses late-LTP in aged WT mice while lacking observable effects on young WT mice. These effects were not observed in p75NTR knockout mice. These results demonstrate that the role of mTOR in hippocampal synaptic plasticity is distinct between young and aged mice. Such effects could be explained by differing sensitivity of young and aged hippocampal neurons to changes in protein synthesis or autophagic activity levels. Additionally, elevated mTOR in the aged hippocampus could cause excessive mTOR signaling, which is worsened by activation and alleviated by inhibition. Further research on mTOR and p75NTR may prove useful for advancing understanding and, ultimately, mitigation of age-induced cognitive decline.


Assuntos
Plasticidade Neuronal , Neurônios , Animais , Masculino , Camundongos , Envelhecimento , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA