Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(6)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37371988

RESUMO

This study investigates the role of eugenol (EUG) on CS-induced acute lung injury (ALI) and how this compound is able to modulate macrophage activity. C57BL/6 mice were exposed to 12 cigarettes/day/5days and treated 15 min/day/5days with EUG. Rat alveolar macrophages (RAMs) were exposed to CSE (5%) and treated with EUG. In vivo, EUG reduced morphological changes inflammatory cells, oxidative stress markers, while, in vitro, it induced balance in the oxidative stress and reduced the pro-inflammatory cytokine release while increasing the anti-inflammatory one. These results suggest that eugenol reduced CS-induced ALI and acted as a modulator of macrophage activity.

2.
Antioxidants (Basel) ; 12(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36978796

RESUMO

Acute and chronic lung injuries are among the leading causes of mortality worldwide. Lung injury can affect several components of the respiratory system, including the airways, parenchyma, and pulmonary vasculature. Although acute and chronic lung injuries represent an enormous economic and clinical burden, currently available therapies primarily focus on alleviating disease symptoms rather than reversing and/or preventing lung pathology. Moreover, some supportive interventions, such as oxygen and mechanical ventilation, can lead to (further) deterioration of lung function and even the development of permanent injuries. Lastly, sepsis, which can originate extrapulmonary or in the respiratory system itself, contributes to many cases of lung-associated deaths. Considering these challenges, we aim to summarize molecular and cellular mechanisms, with a particular focus on airway inflammation and oxidative stress that lead to the characteristic pathophysiology of acute and chronic lung injuries. In addition, we will highlight the limitations of current therapeutic strategies and explore new antioxidant-based drug options that could potentially be effective in managing acute and chronic lung injuries.

3.
Plants (Basel) ; 11(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36365458

RESUMO

Lippia alba is popularly known as lemon balm, with its essential oil (EO) cited for displaying antimicrobial, sedative, and vasorelaxant effects. Yet, its action on isolated human vessels has not been described in the literature. Thus, we evaluated the vasorelaxant effect of essential oil of L. alba (EOLa) on human umbilical arteries (HUA) isolated in organ baths. HUA rings were isolated, subjected to contractions induced by potassium chloride (KCl), serotonin (5-HT), or histamine (HIST) to record the isometric tension, and then treated with EOLa (30-1000 µg/mL). The EOLa showed a more prominent inhibitory effect on the pharmacomechanical coupling contraction via HIST with an EC50 value of 277.1 ± 8.5 µg/mL and maximum relaxant effect at 600 µg/mL. The addition of tetraethylammonium (TEA) or 4-aminopyridine (4-AP) in HUA preparations did not inhibit EOLa total relaxant effect at 1000 µg/mL. In the presence of gliblenclamide (GLI), the oil relaxed the HUA rings by 90.8% at maximum concentration. The EOLa was also investigated for its effects on voltage-operated calcium channels (VOCCs), where the HUA preincubation with this oil at 1000 µg/mL inhibited BaCl2 (0.1-30 mM)-induced contractions. This study demonstrates for the first time that EOla has a vasorelaxant effect on HUA and its particular blockade of VOCCs.

4.
Heliyon ; 6(11): e05445, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33251351

RESUMO

Croton zehntneri is a plant well adapted to the semi-arid climate of northeastern region of Brazil. The essential oil of C. zehntneri (EOCz) has been described to have several pharmacologic properties, including effect on airflow resistance of in vivo respiratory system. For this reason, we investigated the hypothesis that EOCz and its major constituents, anethole and estragole, have antispasmodic activity on tracheal muscle. In tracheal rings of Wistar rats, maintained in Krebs-Henseleit's solution, EOCz, anethole and estragole inhibited contractions induced by 60mM [K+], ACh (10µM), Ba2+ and Phorbol dibutirate (1 µM). For EOCz, anethole and estragole, the IC50 for inhibition of KCl-induced contractions were 145.8 ± 14.8, 89.9 ± 7.4 and 181.0 ± 23.3 µg/mL, respectively, and for ACh-induced contraction, they were 606.1 ± 122.0, 160.5 ± 33.0 and 358.6 ± 49.2 µg/mL. Pharmacodynamic efficacy was maximal in all cases. These data in Ba2+-induced contraction and the differential IC50 suggested that blockade of Voltage Dependent Calcium Channels (VDCC) is a component of the mechanism of action of the three agents. Evaluation of the direct effect of anethole, on VDCC, showed inhibition of the Ca2+ current through this type of channel. These results show that EOCz and the constituents have antispasmodic activity and the mechanism includes blockade of VDCC channels.

5.
Pulm Pharmacol Ther ; 61: 101887, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31923458

RESUMO

BACKGROUND: Cigarette smoke is the major cause of airway inflammatory disease, including airway hyperresponsiveness. Eucalyptol (EUC), also named 1.8-cineole, is a monoterpenoid found in essential oil of medicinal plants, showing several biological effects. HYPOTHESIS/PURPOSE: Based in the eucalyptol protective activity in respiratory diseases as asthma, our hypothesis is that eucalyptol is able to reduce the airway hyperresponsiveness and the respiratory mechanic parameters in rats exposed to cigarette smoke. STUDY DESIGN: Wistar rats were divided into control and cigarettes smoke (CS) groups. CS group was daily subjected to cigarette smoke and treated by inhalation for 15 min/day with EUC (1 mg/mL) or vehicle during 30 days. After treatment, bronchoalveolar lavage (BAL) was collected to analyze the inflammatory profile, and tracheal rings were isolated for evaluation of the airway smooth muscle hyperresponsiveness. Lung function was analyzed in vivo. METHODS: The inflammatory profile was evaluated by optical microscopy performing total (Neubauer chamber) and differential leukocyte count (smear slides stained in H&E). The hyperresponsiveness was evaluated in tracheal rings contracted with potassium chloride (KCl) carbamoylcholine (CCh), or Barium chloride (BaCl2) in presence or absence of nifedipine. The lung function (Newtonian resistance-RN) was evaluated by bronco stimulation with methacholine (MCh). RESULTS: BAL from CS group increased the influx of leukocyte, mainly neutrophils and macrophages compared to control group. EUC reduced by 71% this influx. The tracheal contractions induced by KCl, CCh or BaCl2 were reduced by EUC in 59%, 42% and 26%, respectively. The last one was not different of nifedipine activity. Newtonian resistance (RN) was also reduced in 37% by EUC compared to CS group. CONCLUSION: EUC reduces the hyperresponsiveness and the airway inflammatory profile, recovering the lung function.


Assuntos
Eucaliptol/farmacologia , Mecânica Respiratória/efeitos dos fármacos , Fumar Tabaco/efeitos adversos , Traqueia/efeitos dos fármacos , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Contagem de Leucócitos , Leucócitos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Fumar
6.
Phytomedicine ; 55: 70-79, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668445

RESUMO

BACKGROUND: Eucalyptol is a monoterpenoid oil present in many plants, principally the Eucalyptus species, and has been reported to have anti-inflammatory and antioxidative effects. HYPOTHESIS/PURPOSE: Since the potential effect of eucalyptol on mouse lung repair has not yet been studied, and considering that chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide, the aim of this study was to investigate eucalyptol treatment in emphysematous mice. STUDY DESIGN: Male mice (C57BL/6) were divided into the following groups: control (sham-exposed), cigarette smoke (CS) (mice exposed to 12 cigarettes a day for 60 days), CS + 1 mg/ml (CS mice treated with 1 mg/ml eucalyptol for 60 days), and CS + 10 mg/ml (CS mice treated with 10 mg/ml eucalyptol for 60 days). Mice in the CS and control groups received vehicle for 60 days. Eucalyptol (or the vehicle) was administered via inhalation (15 min/daily). Mice were sacrificed 24 h after the completion of the 120-day experimental procedure. METHODS: Histology and additional lung morphometric analyses, including analysis of mean linear intercept (Lm) and volume density of alveolar septa (Vv[alveolar septa]) were performed. Biochemical analyses were also performed using colorimetric assays for myeloperoxidase (MPO), malondialdehyde (MDA), and superoxide dismutase (SOD) activity, in addition to using ELISA kits for the determination of inflammatory marker levels (tumor necrosis factor alpha [TNF-α], interleukin-1 beta [IL-1ß], interleukin 6 [IL-6], keratinocyte chemoattractant [KC], and tumor growth factor beta 1 [TGF-ß1]). Finally, we investigated protein levels by western blotting (nuclear factor (erythroid-derived 2)-like 2 [Nrf2], nuclear factor kappa B [NF-κB], matrix metalloproteinase 12 [MMP-12], tissue inhibitor of matrix metalloproteinase 1 [TIMP-1], neutrophil elastase [NE], and elastin). RESULTS: Eucalyptol promoted lung repair at the higher dose (10 mg/ml), with de novo formation of alveoli, when compared to the CS group. This result was confirmed with Lm and Vv[alveolar septa] morphometric analyses. Moreover, collagen deposit around the peribronchiolar area was reduced with eucalyptol treatment when compared to the CS group. Eucalyptol also reduced all inflammatory (MPO, TNF-α, IL-1ß, IL-6, KC, and TGF-ß1) and redox marker levels (MDA) when compared to the CS group (at least p < 0.05). In general, 10 mg/ml eucalyptol was more effective than 1 mg/ml and, at both doses, we observed an upregulation of SOD activity when compared to the CS group (p < 0.001). Eucalyptol upregulated elastin and TIMP-1 levels, and reduced neutrophil elastase (NE) levels, when compared to the CS group. CONCLUSION: In summary, eucalyptol promoted lung repair in emphysematous mice and represents a potential therapeutic phytomedicine in the treatment of COPD.


Assuntos
Enfisema/tratamento farmacológico , Eucaliptol/farmacologia , Fumar/efeitos adversos , Animais , Colágeno/metabolismo , Citocinas/metabolismo , Enfisema/induzido quimicamente , Enfisema/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Metaloproteinase 12 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Superóxido Dismutase/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo
7.
Int Immunopharmacol ; 56: 330-338, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29438939

RESUMO

Long-term exposure to cigarette smoke (CS) results in alveolar parenchyma destruction due to chronic inflammatory response and the imbalance between oxidants and antioxidants, and proteases and antiproteases. Emphysema is the main symptom of chronic obstructive pulmonary disease. Current treatment focuses on relieving respiratory symptoms, and inflammation resolution failure is an important pathophysiological element of the disease. Specialized pro-resolving mediators (SPMs) synthesized endogenously during resolution processes demonstrated beneficial effects in murine models of airway inflammation. Here, we aimed to test the SPM AT-RvD1 in a murine model of CS-induced emphysema. AT-RvD1 restored elastic fibers and lung morphology, with reduction in MMP-3, neutrophils, and myeloperoxidase activity and increases in macrophages and IL-10 levels. AT-RvD1 also decreased levels of oxidative stress markers and ROS via upregulation of the Nrf2/Keap1 pathway. Therefore, we suggest that AT-RvD1 causes pro-resolutive action in our murine model of CS-induced emphysema by upregulation of the Nrf2/Keap1 pathway.


Assuntos
Anti-Inflamatórios/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Enfisema/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Animais , Anti-Inflamatórios/química , Fumar Cigarros/efeitos adversos , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/química , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
8.
Inflammation ; 40(5): 1487-1496, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28534139

RESUMO

Elastase (PPE) is usually used for emphysema models, whereas bleomycin (BLM) is used for fibrosis models. The aim of this study was to investigate the effect of BLM in PPE-induced emphysema, as well as the effect of PPE in BLM-induced fibrosis. C57BL/6 mice were divided into five groups: control, PPE, BLM, PPE + BLM, and BLM + PPE. Mice received saline, PPE (3 U/mouse), or BLM (20 U/kg) by intranasal instillation. Mice from the BLM and BLM + PPE groups received BLM on day 0 and saline or PPE on day 21, respectively. Those in the PPE and PPE + BLM groups received PPE on day 0 and saline or BLM on day 21, respectively. Mice were euthanized on day 42. We performed histology, morphometry in lung sections and ELISA, zymography and western blotting in BAL samples or lung homogenates. In the lungs of PPE + BLM and BLM + PPE groups, we observed inflammation, oxidative stress and expression of MMP-2 and MMP-9. The alveolar enlargement was reduced in the PPE + BLM group, suggesting that the BLM could participate in the alveolar remodeling process. The significance of this result supports future therapeutic approaches targeting extracellular-matrix deposition in patients with emphysema as a way to repair the enlargement of alveoli and airspaces.


Assuntos
Bleomicina/uso terapêutico , Elastase Pancreática/uso terapêutico , Enfisema Pulmonar/tratamento farmacológico , Fibrose Pulmonar/tratamento farmacológico , Animais , Bleomicina/efeitos adversos , Inflamação/induzido quimicamente , Pulmão/patologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Elastase Pancreática/efeitos adversos , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia , Enfisema Pulmonar/induzido quimicamente , Fibrose Pulmonar/induzido quimicamente
9.
Inflammation ; 40(4): 1166-1176, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28391514

RESUMO

Ovalbumin-induced allergic lung inflammation (ALI) is a condition believed to be mediated by cytokines, extracellular matrix remodeling, and redox imbalance. In this study, we evaluated pulmonary function together with inflammatory markers as interleukin-4 (IL-4), myeloperoxidase (MPO), eosinophil cells, and redox markers in the lungs of BALB/c mice after ovalbumin (OVA) sensitization and challenge. Our results showed an increase in bronchial hyperresponsiveness stimulated by methacholine (Mch), inflammatory cell influx, especially eosinophils together with an increase of high mobility group box 1 (HMGB1) and altered lipid peroxidation (LP) and antioxidant defenses in the OVA group compared to the control group (p ≤ 0.5). Thus, we demonstrated that OVA-induced ALI altered redox status concomitantly with impaired lung function, which was associated with HMGB1 expression and proteolytic remodeling. Taken together all results found here, we may suggest HMGB1 is an important therapeutic target for asthma, once orchestrates the redox signaling, inflammation, and remodeling that contribute to the disease development.


Assuntos
Asma/metabolismo , Asma/patologia , Proteína HMGB1/metabolismo , Inflamação , Estresse Oxidativo , Animais , Biomarcadores/análise , Hiper-Reatividade Brônquica , Eosinófilos , Inflamação/diagnóstico , Inflamação/imunologia , Peroxidação de Lipídeos , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Estresse Oxidativo/imunologia , Proteólise
10.
Inflammation ; 40(3): 965-979, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28251446

RESUMO

Cigarette smoke (CS) induces pulmonary emphysema by inflammation, oxidative stress, and metalloproteinase (MMP) activation. Pharmacological research studies have not focused on tissue repair after the establishment of emphysema but have instead focused on inflammatory stimulation. The aim of our study was to analyze the effects of atorvastatin and simvastatin on mouse lung repair after emphysema caused by CS. Male mice (C57BL/6, n = 45) were divided into the following groups: control (sham-exposed), CSr (mice exposed to 12 cigarettes a day for 60 days and then treated for another 60 days with the vehicle), CSr+A (CSr mice treated with atorvastatin for 60 days), and CSr+S (CSr mice treated with simvastatin for 60 days). The treatment with atorvastatin and simvastatin was administered via inhalation (15 min with 1 mg/mL once a day). Mice were sacrificed 24 h after the completion of the 120-day experimental procedure. We performed biochemical, morphological, and physiological analyses. We observed decreased levels of leukocytes and cytokines in statin-treated mice, accompanied by a reduction in oxidative stress markers. We also observed a morphological improvement confirmed by a mean linear intercept counting in statin-treated mice. Finally, statins also ameliorated lung function. We conclude that inhaled atorvastatin and simvastatin improved lung repair after cigarette smoke-induced emphysema in mice.


Assuntos
Atorvastatina/farmacologia , Pulmão/efeitos dos fármacos , Enfisema Pulmonar/tratamento farmacológico , Sinvastatina/farmacologia , Animais , Atorvastatina/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Enfisema Pulmonar/etiologia , Sinvastatina/uso terapêutico , Fumar/efeitos adversos
11.
Pulm Pharmacol Ther ; 41: 11-18, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27599597

RESUMO

Short-term cigarette smoke (CS) exposure does not cause emphysema; however, some pathogenesis hallmarks are maintained, such as oxidative stress and inflammation. This study aimed to test the efficacy of eucalyptol against short-term CS exposure in mice. C57BL/6 mice were exposed to 12 cigarettes per day for 5 days (CS group). The control group was exposed to sham smoking. Three groups of mice exposed to CS were treated to different concentrations of eucalyptol (1, 3, 10 mg/mL) via inhalation (15 min/daily) for 5 days (CS + 1 mg, CS+3 mg and CS+10 mg groups). CS group and control one were sham treated by using vehicle. The anti-inflammatory and antioxidant effects of eucalyptol were assessed 24 h after the last CS exposure by determining cell counts, measuring cytokine production and performing western blotting, biochemical and histological analyses. Eucalyptol at 3 mg/mL and 10 mg/mL concentrations reduced total leukocyte numbers compared to the CS group (p < 0.001), while macrophage numbers were reduced at all concentrations (p < 0.001). Myeloperoxidase, used as neutrophil marker, was reduced at 3 mg/mL (p < 0.01) and 10 mg/mL (p < 0.05) concentrations. Eucalyptol reduced cytokine levels (IL-1ß, IL-6 and KC) at 3 mg/mL and 10 mg/mL concentrations (p < 0.01) compared to the CS group. The exception was TNF-α, with a reduction only at 10 mg/mL of eucalyptol compared to the CS group (p < 0.001). Additionally, eucalyptol decreased the NF-kappa B p65 subunit at 3 mg/mL and 10 mg/mL compared to the CS group (p < 0.01). Regarding oxidative stress, eucalyptol reduced reactive oxygen species, superoxide dismutase, catalase and malondialdehyde, mainly at 3 mg/mL and 10 mg/mL concentrations compared to the CS group (at least p < 0.05), parallel to reduced glutathione levels at the same concentrations (p < 0.001). Furthermore, treatment with eucalyptol attenuated CS-induced histopathological alterations. Collectively, these results indicate that eucalyptol acts through a mechanism involving decreased oxidative stress, inflammation and the NF-kappa B p65 subunit against CS-induced acute lung inflammation. Thus, eucalyptol may be a potential agent in the treatment of pulmonary inflammation caused by CS in humans.


Assuntos
Cicloexanóis/farmacologia , Monoterpenos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/prevenção & controle , Fumar/efeitos adversos , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Cicloexanóis/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eucaliptol , Inflamação/patologia , Inflamação/prevenção & controle , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monoterpenos/administração & dosagem , Neutrófilos/metabolismo , Peroxidase/metabolismo , Pneumonia/etiologia , Espécies Reativas de Oxigênio/metabolismo , Fumaça/efeitos adversos , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Biochim Biophys Acta ; 1840(1): 199-208, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24076233

RESUMO

BACKGROUND: Pulmonary emphysema is characterized by the loss of lung architecture. Our hypothesis is that the inhibition of 5-lipoxygenase (5-LO) production may be an important strategy to reduce inflammation, oxidative stress, and metalloproteinases in lung tissue resulting from cigarette smoke (CS)-induced emphysema. METHODS: 5-LO knockout (129S2-Alox5(tm1Fun)/J) and wild-type (WT) mice (129S2/SvPas) were exposed to CS for 60days. Mice exposed to ambient air were used as Controls. Oxidative, inflammatory, and proteolytic markers were analyzed. RESULTS: The alveolar diameter was decreased in CS 5-LO(-/-) mice when compared with the WT CS group. The CS exposure resulted in less pronounced pulmonary inflammation in the CS 5-LO(-/-) group. The CS 5-LO(-/-) group showed leukotriene B4 values comparable to those of the Control group. The expression of MMP-9 was decreased in the CS 5-LO(-/-) group when compared with the CS WT group. The expression of superoxide dismutase, catalase, and glutathione peroxidase were decreased in the CS 5-LO(-/-) group when compared with the Control group. The protein expression of nuclear factor (erythroid-derived 2)-like 2 was reduced in the CS 5-LO(-/-) group when compared to the CS WT group. CONCLUSION: In conclusion, we show for the first time that 5-LO deficiency protects 129S2 mice against emphysema caused by CS. We suggest that the main mechanism of pathogenesis in this model involves the imbalance between proteases and antiproteases, particularly the association between MMP-9 and TIMP-1. General significance This study demonstrates the influence of 5-LO mediated oxidative stress, inflammation, and proteolytic markers in CS exposed mice.


Assuntos
Araquidonato 5-Lipoxigenase/fisiologia , Metaloproteinase 9 da Matriz/metabolismo , Estresse Oxidativo , Pneumonia/prevenção & controle , Enfisema Pulmonar/prevenção & controle , Fumaça/efeitos adversos , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Animais , Western Blotting , Lavagem Broncoalveolar , Ensaio de Imunoadsorção Enzimática , Masculino , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Knockout , Oxirredução , Pneumonia/genética , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/genética , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Testes de Função Respiratória , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inibidor Tecidual de Metaloproteinase-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA