Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 364(6439): 491-495, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31048491

RESUMO

The integrated stress response (ISR) tunes the rate of protein synthesis. Control is exerted by phosphorylation of the general translation initiation factor eIF2. eIF2 is a guanosine triphosphatase that becomes activated by eIF2B, a two-fold symmetric and heterodecameric complex that functions as eIF2's dedicated nucleotide exchange factor. Phosphorylation converts eIF2 from a substrate into an inhibitor of eIF2B. We report cryo-electron microscopy structures of eIF2 bound to eIF2B in the dephosphorylated state. The structures reveal that the eIF2B decamer is a static platform upon which one or two flexible eIF2 trimers bind and align with eIF2B's bipartite catalytic centers to catalyze nucleotide exchange. Phosphorylation refolds eIF2α, allowing it to contact eIF2B at a different interface and, we surmise, thereby sequestering it into a nonproductive complex.


Assuntos
Fator de Iniciação 2B em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/química , Nucleotídeos de Guanina/química , Biossíntese de Proteínas , Estresse Fisiológico , Microscopia Crioeletrônica , Ativação Enzimática , Enzimas , Humanos , Modelos Químicos , Fosforilação , Conformação Proteica , Multimerização Proteica
2.
Biol Open ; 7(7)2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30037883

RESUMO

Although the primary protein sequence of ubiquitin (Ub) is extremely stable over evolutionary time, it is highly tolerant to mutation during selection experiments performed in the laboratory. We have proposed that this discrepancy results from the difference between fitness under laboratory culture conditions and the selective pressures in changing environments over evolutionary timescales. Building on our previous work (Mavor et al., 2016), we used deep mutational scanning to determine how twelve new chemicals (3-Amino-1,2,4-triazole, 5-fluorocytosine, Amphotericin B, CaCl2, Cerulenin, Cobalt Acetate, Menadione, Nickel Chloride, p-Fluorophenylalanine, Rapamycin, Tamoxifen, and Tunicamycin) reveal novel mutational sensitivities of ubiquitin residues. Collectively, our experiments have identified eight new sensitizing conditions for Lys63 and uncovered a sensitizing condition for every position in Ub except Ser57 and Gln62. By determining the ubiquitin fitness landscape under different chemical constraints, our work helps to resolve the inconsistencies between deep mutational scanning experiments and sequence conservation over evolutionary timescales.

3.
Nat Commun ; 9(1): 1314, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615624

RESUMO

Rational design and directed evolution have proved to be successful approaches to increase catalytic efficiencies of both natural and artificial enzymes. Protein dynamics is recognized as important, but due to the inherent flexibility of biological macromolecules it is often difficult to distinguish which conformational changes are directly related to function. Here, we use directed evolution on an impaired mutant of the proline isomerase CypA and identify two second-shell mutations that partially restore its catalytic activity. We show both kinetically, using NMR spectroscopy, and structurally, by room-temperature X-ray crystallography, how local perturbations propagate through a large allosteric network to facilitate conformational dynamics. The increased catalysis selected for in the evolutionary screen is correlated with an accelerated interconversion between the two catalytically essential conformational sub-states, which are both captured in the high-resolution X-ray ensembles. Our data provide a glimpse of an evolutionary trajectory and show how subtle changes can fine-tune enzyme function.


Assuntos
Ciclofilina A/química , Evolução Molecular Direcionada , Catálise , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Método de Monte Carlo , Mutação , Prolina/química , Especificidade por Substrato , Temperatura
4.
J Synchrotron Radiat ; 24(Pt 1): 73-82, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009548

RESUMO

Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature have not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins (T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 107 Gy at 100 K and 105 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. This analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation damage, and not as a result thereof.


Assuntos
Cristalografia por Raios X , Proteínas/efeitos da radiação , Temperatura , Animais , Galinhas , Cristalização , Feminino , Humanos , Proteínas/química
5.
Elife ; 52016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27111525

RESUMO

Ubiquitin is essential for eukaryotic life and varies in only 3 amino acid positions between yeast and humans. However, recent deep sequencing studies indicate that ubiquitin is highly tolerant to single mutations. We hypothesized that this tolerance would be reduced by chemically induced physiologic perturbations. To test this hypothesis, a class of first year UCSF graduate students employed deep mutational scanning to determine the fitness landscape of all possible single residue mutations in the presence of five different small molecule perturbations. These perturbations uncover 'shared sensitized positions' localized to areas around the hydrophobic patch and the C-terminus. In addition, we identified perturbation specific effects such as a sensitization of His68 in HU and a tolerance to mutation at Lys63 in DTT. Our data show how chemical stresses can reduce buffering effects in the ubiquitin proteasome system. Finally, this study demonstrates the potential of lab-based interdisciplinary graduate curriculum.


Assuntos
Análise Mutacional de DNA , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Estresse Fisiológico , Ubiquitina/genética , Ubiquitina/metabolismo , Biologia/educação , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/fisiologia , Estudantes , Universidades
6.
Elife ; 42015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26422513

RESUMO

Determining the interconverting conformations of dynamic proteins in atomic detail is a major challenge for structural biology. Conformational heterogeneity in the active site of the dynamic enzyme cyclophilin A (CypA) has been previously linked to its catalytic function, but the extent to which the different conformations of these residues are correlated is unclear. Here we compare the conformational ensembles of CypA by multitemperature synchrotron crystallography and fixed-target X-ray free-electron laser (XFEL) crystallography. The diffraction-before-destruction nature of XFEL experiments provides a radiation-damage-free view of the functionally important alternative conformations of CypA, confirming earlier synchrotron-based results. We monitored the temperature dependences of these alternative conformations with eight synchrotron datasets spanning 100-310 K. Multiconformer models show that many alternative conformations in CypA are populated only at 240 K and above, yet others remain populated or become populated at 180 K and below. These results point to a complex evolution of conformational heterogeneity between 180--240 K that involves both thermal deactivation and solvent-driven arrest of protein motions in the crystal. The lack of a single shared conformational response to temperature within the dynamic active-site network provides evidence for a conformation shuffling model, in which exchange between rotamer states of a large aromatic ring in the middle of the network shifts the conformational ensemble for the other residues in the network. Together, our multitemperature analyses and XFEL data motivate a new generation of temperature- and time-resolved experiments to structurally characterize the dynamic underpinnings of protein function.


Assuntos
Ciclofilina A/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica/efeitos da radiação , Temperatura
7.
Cell ; 150(2): 413-25, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22817900

RESUMO

Protein function is often regulated by posttranslational modifications (PTMs), and recent advances in mass spectrometry have resulted in an exponential increase in PTM identification. However, the functional significance of the vast majority of these modifications remains unknown. To address this problem, we compiled nearly 200,000 phosphorylation, acetylation, and ubiquitination sites from 11 eukaryotic species, including 2,500 newly identified ubiquitylation sites for Saccharomyces cerevisiae. We developed methods to prioritize the functional relevance of these PTMs by predicting those that likely participate in cross-regulatory events, regulate domain activity, or mediate protein-protein interactions. PTM conservation within domain families identifies regulatory "hot spots" that overlap with functionally important regions, a concept that we experimentally validated on the HSP70 domain family. Finally, our analysis of the evolution of PTM regulation highlights potential routes for neutral drift in regulatory interactions and suggests that only a fraction of modification sites are likely to have a significant biological role.


Assuntos
Eucariotos/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Sequência de Aminoácidos , Animais , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA