Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chest ; 165(2): 396-404, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37716474

RESUMO

BACKGROUND: The early life origins of chronic pulmonary diseases are thought to arise in peripheral small airways. Predictors of ventilation inhomogeneity, a proxy of peripheral airway function, are understudied in schoolchildren. RESEARCH QUESTION: Is the double-tracer gas single-breath washout (DTG-SBW) measurement feasible in a pediatric field study setting? What are the predictors of the DTG-SBW-derived ventilation inhomogeneity estimate in unselected schoolchildren? STUDY DESIGN AND METHODS: In this prospective cross-sectional field study, a mobile lung function testing unit visited participating schools in Switzerland. We applied DTG-SBW, fraction of exhaled nitric oxide (Feno), and spirometry measurements. The DTG-SBW is based on tidal inhalation of helium and sulfur-hexafluoride, and the phase III slope (SIIIHe-SF6) is derived. We assessed feasibility, repeatability, and associations of SIIIHe-SF6 with the potential predictors of anthropometrics, presence of wheeze (ie, parental report of one or more episode of wheeze in the prior year), Feno, FEV1, and FEV1/FVC. RESULTS: In 1,782 children, 5,223 DTG-SBW trials were obtained. The DTG-SBW was acceptable in 1,449 children (81.3%); the coefficient of variation was 39.8%. SIIIHe-SF6 was independently but weakly positively associated with age and BMI. In 276 children (21.2%), wheeze was reported. SIIIHe-SF6 was higher by 0.049 g.mol.L-1 in children with wheeze compared with those without and remained associated with wheeze after adjusting for age and BMI in a multivariable linear regression model. SIIIHe-SF6 was not associated with Feno, FEV1, and FEV1/FVC. INTERPRETATION: The DTG-SBW is feasible in a pediatric field study setting. On the population level, age, body composition, and wheeze are independent predictors of peripheral airway function in unselected schoolchildren. The variation of the DTG-SBW possibly constrains its current applicability on the individual level. TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT03659838; URL: www. CLINICALTRIALS: gov.


Assuntos
Gases , Respiração , Humanos , Criança , Estudos Prospectivos , Estudos Transversais , Testes Respiratórios , Hexafluoreto de Enxofre
3.
Respir Med Res ; 83: 100993, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37058881

RESUMO

Lung function testing and lung imaging are commonly used techniques to monitor respiratory diseases, such as cystic fibrosis (CF). The nitrogen (N2) multiple-breath washout technique (MBW) has been shown to detect ventilation inhomogeneity in CF, but the underlying pathophysiological processes that are altered are often unclear. Dynamic oxygen-enhanced magnetic resonance imaging (OE-MRI) could potentially be performed simultaneously with MBW because both techniques require breathing of 100% oxygen (O2) and may allow for visualisation of alterations underlying impaired MBW outcomes. However, simultaneous MBW and OE-MRI has never been assessed, potentially as it requires a magnetic resonance (MR) compatible MBW equipment. In this pilot study, we assessed whether MBW and OE-MRI can be performed simultaneously using a commercial MBW device that has been modified to be MR-compatible. We performed simultaneous measurements in five healthy volunteers aged 25-35 years. We obtained O2 and N2 concentrations from both techniques, and generated O2 wash-in time constant and N2 washout maps from OE-MRI data. We obtained good quality simultaneous measurements in two healthy volunteers due to technical challenges related to the MBW equipment and poor tolerance. Oxygen and N2 concentrations from both techniques, as well as O2 wash-in time constant maps and N2 washout maps could be obtained, suggesting that simultaneous measurements may have the potential to allow for comparison and visualization of regional differences in ventilation underlying impaired MBW outcomes. Simultaneous MBW and OE-MRI measurements can be performed with a modified MBW device and may help to understand MBW outcomes, but the measurements are challenging and have poor feasibility.


Assuntos
Fibrose Cística , Oxigênio , Humanos , Adulto , Projetos Piloto , Testes Respiratórios/métodos , Pulmão/diagnóstico por imagem , Fibrose Cística/diagnóstico por imagem , Imageamento por Ressonância Magnética
5.
Ann Am Thorac Soc ; 19(11): 1856-1864, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35580242

RESUMO

Rationale: Fetal growth restriction (FGR) and resulting low birth weight are risk factors for impaired lung development. However, both are often correlated with other factors, especially prematurity. Therefore, the question whether lung function changes in individuals with FGR are driven by gestational age, fetal growth, or both often remains unanswered. Objectives: To examine the association of birth weight with lung function in monochorionic twins with selective FGR in one twin. Methods: We included 20 monochorionic twin pairs with selective FGR and subsequent discordant birth weight with a minimum age of 6 years. In this unique case-control design, the smaller twin represents the case and the cotwin the almost identical counterpart. They performed spirometry and underwent body plethysmography, multiple-breath washout, and magnetic resonance imaging (MRI). We compared lung function and MRI outcomes between the smaller twins and their cotwins by paired t tests, and we used mixed linear models to assess the association between birth weight and outcomes. Results: Mean study age was 18.4 years (range, 7.5-29.4), and mean difference in birth weight within the twin pairs was 575 g (range, 270-1,130). The mean difference of forced expiratory volume in 1 second z-score was -0.64 (95% confidence interval [CI], -0.98 to -0.30), and -0.55 (95% CI, -0.92 to -0.18) of forced vital capacity z-score between the smaller twins and their cotwins. Both were associated with birth weight: per 500 g of birth weight, forced expiratory volume in 1 second z-score increased by 0.50 (95% CI, 0.35-0.65; P < 0.001) and forced vital capacity z-score increased by 0.44 (95% CI, 0.31-0.57; P < 0.001). Sacin from multiple-breath washout, as a marker for ventilation inhomogeneity of acinar airways, was elevated in the smaller twins and was associated with low birth weight. There was no difference for MRI outcomes. The results remained similar after adjustment for study height. Conclusions: Low birth weight was associated with reduced large and small airway function independent of gestational age and body growth. Our findings suggest that intrauterine impairment of lung development induced by FGR has significant consequences on lung function until early adulthood.


Assuntos
Retardo do Crescimento Fetal , Recém-Nascido de Baixo Peso , Recém-Nascido , Feminino , Humanos , Adulto , Criança , Adolescente , Adulto Jovem , Peso ao Nascer , Idade Gestacional , Pulmão
6.
ERJ Open Res ; 8(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35295235

RESUMO

Background: Volumetric capnography (VCap) is a simpler alternative to multiple-breath washout (MBW) to detect ventilation inhomogeneity in patients with cystic fibrosis (CF). However, its diagnostic performance is influenced by breathing dynamics. We introduce two novel VCap indices, the capnographic inhomogeneity indices (CIIs), that may overcome this limitation and explore their diagnostic characteristics in a cohort of CF patients. Methods: We analysed 320 N2-MBW trials from 50 CF patients and 65 controls (age 4-18 years) and calculated classical VCap indices, such as slope III (SIII) and the capnographic index (KPIv). We introduced novel CIIs based on a theoretical lung model and assessed their diagnostic performance compared to classical VCap indices and the lung clearance index (LCI). Results: Both CIIs were significantly higher in CF patients compared with controls (mean±sd CII1 5.9±1.4% versus 5.1±1.0%, p=0.002; CII2 7.7±1.8% versus 6.8±1.4%, p=0.002) and presented strong correlation with LCI (CII1 r2=0.47 and CII2 r2=0.44 in CF patients). Classical VCap indices showed inferior discriminative ability (SIII 2.3±1.0%/L versus 1.9±0.7%/L, p=0.013; KPIv 3.9±1.3% versus 3.5±1.2%, p=0.071), while the correlation with LCI was weak (SIII r2=0.03; KPIv r2=0.08 in CF patients). CIIs showed lower intra-subject inter-trial variability, calculated as coefficient of variation for three and relative difference for two trials, than classical VCap indices, but higher than LCI (CII1 11.1±8.2% and CII2 11.0±8.0% versus SIII 16.3±13.5%; KPIv 15.9±12.8%; LCI 5.9%±4.2%). Conclusion: CIIs detect ventilation inhomogeneity better than classical VCap indices and correlate well with LCI. However, further studies on their diagnostic performance and clinical utility are required.

9.
Pediatr Pulmonol ; 53(5): 628-635, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29418075

RESUMO

INTRODUCTION: Multiple breath washout (MBW) is a sensitive test to measure lung volumes and ventilation inhomogeneity from infancy on. The commonly used setup for infant MBW, based on ultrasonic flowmeter, requires extensive signal processing, which may reduce robustness. A new setup may overcome some previous limitations but formal validation is lacking. AIM: We assessed the feasibility of infant MBW testing with the new setup and compared functional residual capacity (FRC) values of the old and the new setup in vivo and in vitro. METHODS: We performed MBW in four healthy infants and four infants with cystic fibrosis, as well as in a Plexiglas lung simulator using realistic lung volumes and breathing patterns, with the new (Exhalyzer D, Spiroware 3.2.0, Ecomedics) and the old setup (Exhalyzer D, WBreath 3.18.0, ndd) in random sequence. RESULTS: The technical feasibility of MBW with the new device-setup was 100%. Intra-subject variability in FRC was low in both setups, but differences in FRC between the setups were considerable (mean relative difference 39.7%, range 18.9; 65.7, P = 0.008). Corrections of software settings decreased FRC differences (14.0%, -6.4; 42.3, P = 0.08). Results were confirmed in vitro. CONCLUSION: MBW measurements with the new setup were feasible in infants. However, despite attempts to correct software settings, outcomes between setups were not interchangeable. Further work is needed before widespread application of the new setup can be recommended.


Assuntos
Fibrose Cística/fisiopatologia , Respiração , Testes de Função Respiratória/instrumentação , Fluxômetros , Humanos , Lactente , Saúde do Lactente , Pulmão/fisiologia , Testes de Função Respiratória/métodos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA