Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sports Med ; 53(Suppl 1): 97-113, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787844

RESUMO

A growing number of companies are developing or using wearable sensor technologies that can monitor, analyse and transmit data from humans in real time that can be used by the sporting, biomedical and media industries. To explore this phenomenon, we describe and review two high-profile sporting events where innovations in wearable technologies were trialled: the Tokyo 2020 Summer Olympic Games (Tokyo 2020, Japan) and the 2022 adidas Road to Records (Germany). These two major sporting events were the first time academic and industry partners came together to implement real-time wearable solutions during major competition, to protect the health of athletes competing in hot and humid environments, as well as to better understand how these metrics can be used moving forwards. Despite the undoubted benefits of such wearables, there are well-founded concerns regarding their use including: (1) limited evidence quantifying the potential beneficial effects of analysing specific parameters, (2) the quality of hardware and provided data, (3) information overload, (4) data security and (5) exaggerated marketing claims. Employment and sporting rules and regulations also need to evolve to facilitate the use of wearable devices. There is also the potential to obtain real-time data that will oblige medical personnel to make crucial decisions around whether their athletes should continue competing or withdraw for health reasons. To protect athletes, the urgent need is to overcome these ethical/data protection concerns and develop wearable technologies that are backed by quality science. The fields of sport and exercise science and medicine provide an excellent platform to understand the impact of wearable sensors on performance, wellness, health, and disease.


Assuntos
Esportes , Dispositivos Eletrônicos Vestíveis , Humanos , Atletas , Exercício Físico , Tecnologia
2.
J Sports Med Phys Fitness ; 61(8): 1061-1072, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34256539

RESUMO

Rapid advances in wearable technologies and real-time monitoring have resulted in major inroads in the world of recreational and elite sport. One such innovation is the application of real-time monitoring, which comprises a smartwatch application and ecosystem, designed to collect, process and transmit a wide range of physiological, biomechanical, bioenergetic and environmental data using cloud-based services. We plan to assess the impact of this wireless technology during Tokyo 2020, where this technology could help characterize the physiological and thermal strain experienced by an athlete, as well as determine future management of athletes during a medical emergency as a result of a more timely and accurate diagnosis. Here we describe some of the innovative technologies developed for numerous sports at Tokyo 2020 ranging from race walking (20 km and 50 km events), marathon, triathlon, road cycling (including the time trial event), mountain biking, to potentially team sports played outdoors. A more symbiotic relationship between sport, health and technology needs to be encouraged that harnesses the unique demands of elite sport (e.g., the need for unobtrusive devices that provide real-time feedback) and serves as medical and preventive support for the athlete's care. The implementation of such applications would be particularly welcome in the field of medicine (i.e., telemedicine applications) and the workplace (with particular relevance to emergency services, the military and generally workers under extreme environmental conditions). Laboratory and field-based studies are required in simulated scenarios to validate such emerging technologies, with the field of sport serving as an excellent model to understand and impact disease.


Assuntos
Esportes , Telemedicina , Dispositivos Eletrônicos Vestíveis , Atletas , Ecossistema , Humanos
3.
Artigo em Inglês | MEDLINE | ID: mdl-31575034

RESUMO

Spatial variability in temperature exists within metropolitan areas but very few studies have investigated intra-urban differentiation in the temperature-mortality effects. We investigated whether local characteristics of 42 Municipalities within the Greater Athens Area lead to modified temperature effects on mortality and if effect modifiers can be identified. Generalized Estimating Equations models were used to assess the effect of high ambient temperature on the total and cause-specific daily number of deaths and meta-regression to investigate effect modification. We found significant effects of daily temperature increases on all-cause, cardiovascular, and respiratory mortality (e.g., for all ages 4.16% (95% CI: 3.73,4.60%) per 1 °C increase in daily temperature (lags 0-3). Heterogeneity in the effect estimates between Municipalities was observed in several outcomes and environmental and socio-economic effect modifying variables were identified, such as % area coverage of buildings, length of roads/km2, population density, % unemployed, % born outside the EU countries and mean daily temperature. To further examine the role of temperature, we alternatively used modelled temperature per Municipality and calculated the effects. We found that heterogeneity was reduced but not eliminated. It appears that there are socioeconomic status and environmental determinants of the magnitude of heat-related effects on mortality, which are detected with some consistency and should be further investigated.


Assuntos
Temperatura Alta , Mortalidade/tendências , Poluição do Ar/análise , Pré-Escolar , Cidades , Grécia , Humanos , Fatores de Tempo
5.
Sensors (Basel) ; 13(8): 11146-66, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23966201

RESUMO

This paper presents the results of an operational nationwide burnt area mapping service realized over Greece for the years 2007-2011, through the implementation of the so-called BSM_NOA dedicated method developed at the National Observatory of Athens for post-fire recovery management. The method exploits multispectral satellite imagery, such as Landsat-TM, SPOT, FORMOSAT-2, WorldView and IKONOS. The analysis of fire size distribution reveals that a high number of fire events evolve to large and extremely large wildfires under favorable wildfire conditions, confirming the reported trend of an increasing fire-severity in recent years. Furthermore, under such conditions wildfires affect to a higher degree areas at high altitudes, threatening the existence of ecologically significant ecosystems. Finally, recent socioeconomic changes and land abandonment has resulted in the encroachment of former agricultural areas of limited productivity by shrubs and trees, resulting both in increased fuel availability and continuity, and subsequently increased burnability.


Assuntos
Algoritmos , Monitoramento Ambiental/métodos , Reconhecimento Automatizado de Padrão/métodos , Imagens de Satélites/métodos , Desastres , Incêndios
6.
Environ Monit Assess ; 185(10): 8239-58, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23625352

RESUMO

The average summer temperatures as well as the frequency and intensity of hot days and heat waves are expected to increase due to climate change. Motivated by this consequence, we propose a methodology to evaluate the monthly heat wave hazard and risk and its spatial distribution within large cities. A simple urban climate model with assimilated satellite-derived land surface temperature images was used to generate a historic database of urban air temperature fields. Heat wave hazard was then estimated from the analysis of these hourly air temperatures distributed at a 1-km grid over Athens, Greece, by identifying the areas that are more likely to suffer higher temperatures in the case of a heat wave event. Innovation lies in the artificial intelligence fuzzy logic model that was used to classify the heat waves from mild to extreme by taking into consideration their duration, intensity and time of occurrence. The monthly hazard was subsequently estimated as the cumulative effect from the individual heat waves that occurred at each grid cell during a month. Finally, monthly heat wave risk maps were produced integrating geospatial information on the population vulnerability to heat waves calculated from socio-economic variables.


Assuntos
Inteligência Artificial , Mudança Climática , Lógica Fuzzy , Temperatura Alta , Humanos , Modelos Teóricos , Medição de Risco/métodos
7.
Sensors (Basel) ; 9(2): 1204-20, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22399963

RESUMO

In response to the urging need of fire managers for timely information on fire location and extent, the SITHON system was developed. SITHON is a fully digital thermal imaging system, integrating INS/GPS and a digital camera, designed to provide timely positioned and projected thermal images and video data streams rapidly integrated in the GIS operated by Crisis Control Centres. This article presents in detail the hardware and software components of SITHON, and demonstrates the first encouraging results of test flights over the Sithonia Peninsula in Northern Greece. It is envisaged that the SITHON system will be soon operated onboard various airborne platforms including fire brigade airplanes and helicopters as well as on UAV platforms owned and operated by the Greek Air Forces.

8.
Environ Manage ; 33(2): 212-25, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15285399

RESUMO

A wildland fire is a serious threat for forest ecosystems in Southern Europe affecting severely and irreversibly regions of significant ecological value as well as human communities. To support decision makers during large-scale forest fire incidents, a multidisciplinary system has been developed that provides rational and quantitative information based on the site-specific circumstances and the possible consequences. The system's architecture consists of several distinct supplementary modules of near real-time satellite monitoring and fire forecast using an integrated framework of satellite Remote Sensing, GIS, and RDBMS technologies equipped with interactive communication capabilities. The system may handle multiple fire ignitions and support decisions regarding dispatching of utilities, equipment, and personnel that would appropriately attack the fire front. The operational system was developed for the region of Penteli Mountain in Attika, Greece, one of the mountain areas in the country most hit by fires. Starting from a real fire incident in August 2000, a scenario is presented to illustrate the effectiveness of the proposed approach.


Assuntos
Técnicas de Apoio para a Decisão , Planejamento em Desastres , Incêndios , Agricultura Florestal , Sistemas de Informação Geográfica , Comunicação , Monitoramento Ambiental , Europa (Continente) , Humanos
9.
Environ Manage ; 32(2): 290-8, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14753653

RESUMO

The Mediterranean environment is exposed to various hazards, including oil spills, forest fires, and floods, making the development of a decision support system (DSS) for emergency management an objective of utmost importance. The present work presents a complete DSS for managing marine pollution events caused by oil spills. The system provides all the necessary tools for early detection of oil-spills from satellite images, monitoring of their evolution, estimation of the accident consequences and provision of support to responsible Public Authorities during clean-up operations. The heart of the system is an image processing-geographic information system and other assistant individual software tools that perform oil spill evolution simulation and all other necessary numerical calculations as well as cartographic and reporting tasks related to a specific management of the oil spill event. The cartographic information is derived from the extant general maps representing detailed information concerning several regional environmental and land-cover characteristics as well as financial activities of the application area. Early notification of the authorities with up-to-date accurate information on the position and evolution of the oil spill, combined with the detailed coastal maps, is of paramount importance for emergency assessment and effective clean-up operations that would prevent environmental hazard. An application was developed for the Region of Crete, an area particularly vulnerable to oil spills due to its location, ecological characteristics, and local economic activities.


Assuntos
Acidentes , Técnicas de Apoio para a Decisão , Planejamento em Desastres , Sistemas de Informação Geográfica , Petróleo/intoxicação , Poluição da Água/prevenção & controle , Monitoramento Ambiental , Região do Mediterrâneo , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA