Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Front Plant Sci ; 14: 1161702, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229130

RESUMO

Introduction: The eons-long co-evolvement of plants and bacteria led to a plethora of interactions between the two kingdoms, in which bacterial pathogenicity is counteracted by plant-derived antimicrobial defense molecules. In return, efflux pumps (EP) form part of the resistance mechanism employed by bacteria to permit their survival in this hostile chemical environment. In this work we study the effect of combinations of efflux pump inhibitors (EPIs) and plant-derived phytochemicals on bacterial activity using Pectobacteriun brasiliense 1692 (Pb1692) as a model system. Methods: We measured the minimal inhibitory concentration (MIC) of two phytochemicals, phloretin (Pht) and naringenin (Nar), and of one common antibiotic ciprofloxacin (Cip), either alone or in combinations with two known inhibitors of the AcrB EP of Escherichia coli, a close homolog of the AcrAB-TolC EP of Pb1692. In addition, we also measured the expression of genes encoding for the EP, under similar conditions. Results: Using the FICI equation, we observed synergism between the EPIs and the phytochemicals, but not between the EPIs and the antibiotic, suggesting that EP inhibition potentiated the antimicrobial activity of the plant derived compounds, but not of Cip. Docking simulations were successfully used to rationalize these experimental results. Discussion: Our findings suggest that AcrAB-TolC plays an important role in survival and fitness of Pb1692 in the plant environment and that its inhibition is a viable strategy for controlling bacterial pathogenicity.

2.
J Sci Food Agric ; 103(1): 48-56, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35794785

RESUMO

BACKGROUND: Intensive olive (Olea europaea L.) orchards are fertilized, mostly with the macronutrients nitrogen (N), phosphorus (P) and potassium (K). The effects of different application levels of these nutrients on olive oil composition and quality were studied over 6 years in a commercial intensively cultivated 'Barnea' olive orchard in Israel. RESULTS: Oil quality and composition were affected by N, but not P or K availability. Elevated N levels increased free fatty acid content and reduced polyphenol level in the oil. Peroxide value was not affected by N, P or K levels. The relative concentrations of palmitoleic, linoleic and linolenic fatty acids increased with increasing levels of N application, whereas that of oleic acid, monounsaturated-to-polyunsaturated fatty acid ratio and oleic-to-linoleic ratio decreased. CONCLUSION: These results indicate that intensive olive orchard fertilization should be carried out carefully, especially where N application is concerned, to avoid a decrease in oil quality due to over-fertilization. Informed application of macronutrients requires leaf and fruit analyses to establish good agricultural practices, especially in view of the expansion of olive cultivation to new agricultural regions and soils. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Olea , Azeite de Oliva/química , Olea/química , Frutas/química , Ácidos Graxos Monoinsaturados , Nutrientes , Fertilização , Ácidos Graxos/química , Óleos de Plantas/química
3.
Microorganisms ; 10(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36557768

RESUMO

Bis(2-carboxyphenyl) succinate (disalicylic acid; DSA) is composed of two salicylic acids connected by a succinyl linker. Here, we propose its use as a new, synthetic plant-protection agent. DSA was shown to control Pectobacterium brasiliense, an emerging soft-rot pathogen of potato and ornamental crops, at minimal inhibitory concentrations (MIC) lower than those of salicylic acid. Our computational-docking analysis predicted that DSA would inhibit the quorum-sensing (QS) synthase of P. brasiliense ExpI more strongly than SA would. In fact, applying DSA to P. brasiliense inhibited its biofilm formation, secretion of plant cell wall-degrading enzymes, motility and production of acyl-homoserine lactones (AHL) and, subsequently, impaired its virulence. DSA also inhibited the production of AHL by a QS-negative Escherichia coli strain (DH5α) that had been transformed with P. brasiliense AHL synthase, as demonstrated by the biosensors Chromobacterium violaceaum CV026 and E. coli pSB401. Inhibition of the QS machinery appears to be one of the mechanisms by which DSA inhibits specific virulence determinants. A new route is proposed for the synthesis of DSA, which holds greater potential for use as an anti-virulence agent than its precursor SA. Based on these findings, DSA is an excellent candidate for repurposing for new applications.

4.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35955630

RESUMO

Modifications of the activity of Cytochrome 450 (CYP) enzymes by compounds in food might impair medical treatments. These CYP-mediated food-drug interactions (FDI) play a major role in drug clearance in the intestine and liver. Inter-individual variation in both CYP expression and structure is an important determinant of FDI. Traditional targeted approaches have highlighted a limited number of dietary inhibitors and single-nucleotide variations (SNVs), each determining personal CYP activity and inhibition. These approaches are costly in time, money and labor. Here, we review computational tools and databases that are already available and are relevant to predicting CYP-mediated FDIs. Computer-aided approaches such as protein-ligand interaction modeling and the virtual screening of big data narrow down hundreds of thousands of items in databanks to a few putative targets, to which the research resources could be further directed. Structure-based methods are used to explore the structural nature of the interaction between compounds and CYP enzymes. However, while collections of chemical, biochemical and genetic data are available today and call for the implementation of big-data approaches, ligand-based machine-learning approaches for virtual screening are still scarcely used for FDI studies. This review of CYP-mediated FDIs promises to attract scientists and the general public.


Assuntos
Sistema Enzimático do Citocromo P-450 , Interações Alimento-Droga , Computadores , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Ligantes , Aprendizado de Máquina
5.
J Agric Food Chem ; 70(8): 2752-2761, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35104412

RESUMO

CYP3A4 is the main human enzyme responsible for phase I metabolism of dietary compounds, prescribed drugs and xenobiotics, steroid hormones, and bile acids. The inhibition of CYP3A4 activity might impair physiological mechanisms, including the endocrine system and response to drug admission. Here, we aimed to discover new CYP3A4 inhibitors from food and dietary supplements. A deep-learning model was built that classifies compounds as either an inhibitor or noninhibitor, with a high specificity of 0.997. We used this classifier to virtually screen ∼60,000 dietary compounds. Of the 115 identified potential inhibitors, only 31 were previously suggested. Many herbals, as predicted here, might cause impaired metabolism of drugs, and endogenous hormones and bile acids. Additionally, by applying Lipinski's rules of five, 17 compounds were also classified as potential intestine local inhibitors. New CYP3A4 inhibitors predicted by the model, bilobetin and picropodophyllin, were assayed in vitro.


Assuntos
Citocromo P-450 CYP3A , Aprendizado Profundo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Xenobióticos
7.
J Nutr Biochem ; 98: 108867, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34571189

RESUMO

While non-alcoholic fatty liver disease (NAFLD) represents the common cause of chronic liver disease, specific therapies are currently unavailable. The wine industry produces millions of tons of residue (pomace), which contains high levels of bioactive phytochemicals. The aim of this study was to clarify the potential benefits of grape pomace for the treatment of NAFLD at different levels of severity, and to clarify the mechanism of action. C57Bl/6 mice were given high fat diet (HFD) or western diet (WD) as models of obesity and hepatic steatosis or steatohepatitis, respectively, with or without pomace supplementation (50-250 mg/day). Pomace inhibited food intake, and reduced serum leptin and body weight gain. Ectopic fat deposition was reduced, while white adipose tissue mass was preserved. In addition, pomace improved glucose tolerance and insulin sensitivity, prevented the development of adipose tissue inflammation, and reduced hepatic steatosis. Higher expression of genes involved in fatty acids transport and oxidation was observed in adipose tissue, while lipogenic genes were attenuated in the liver of pomace-treated mice. In WD-fed mice, pomace reduced the severity of hepatic steatosis and inflammation and improved blood lipid profile, but was ineffective in reversing hepatic damage of advanced NASH. In conclusion, pomace improved insulin sensitivity and reduced ectopic fat deposition, leading to a healthier metabolic profile. Pomace may hold the potential as a supplement with beneficial health outcomes for the prevention and treatment of hepatic steatosis and other obesity-related pathologies.


Assuntos
Tecido Adiposo/metabolismo , Fígado Gorduroso/tratamento farmacológico , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Extratos Vegetais/farmacologia , Vitis/química , Animais , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Compostos Fitoquímicos/farmacologia , Aumento de Peso/efeitos dos fármacos
8.
Microorganisms ; 9(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34442864

RESUMO

The microbial community inhabiting a plant's root zone plays a crucial role in plant health and protection. To assess the ability of commercial plant growth-promoting products to enhance the positive effects of this environment, two products containing beneficial soil bacteria and a product containing plant extracts were tested on Zantedeschia aethiopica and Ornithogalum dubium. The products were tested in two different growing media: a soil and a soilless medium. The effects of these products on Pectobacterium brasiliense, the causal agent of soft rot disease, were also evaluated in vitro, and on naturally occurring infections in the greenhouse. The growing medium was found to have the strongest effect on the microbial diversity of the root-associated microbiome, with the next-strongest effect due to plant type. These results demonstrate that either a single bacterial strain or a product will scarcely reach the level that is required to influence soil microbial communities. In addition, the microbes cultured from these products, could not directly inhibit Pectobacterium growth in vitro. We suggest density-based and functional analyses in the future, to study the specific interactions between plants, soil type, soil microbiota and relevant pathogens. This should increase the effectiveness of bio-supplements and soil disinfestation with natural products, leading to more sustainable, environmentally friendly solutions for the control of bacterial plant diseases.

9.
Front Plant Sci ; 12: 671807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249044

RESUMO

The effects of phloretin a phytoalexin from apple, was tested on Pectobacterium brasiliense (Pb1692), an emerging soft-rot pathogen of potato. Exposure of Pb1692 to 0.2 mM phloretin a concentration that does not affect growth, or to 0.4 mM a 50% growth inhibiting concentration (50% MIC), reduced motility, biofilm formation, secretion of plant cell wall-degrading enzymes, production of acyl-homoserine lactone (AHL) signaling molecules and infection, phenotypes that are associated with bacterial population density-dependent system known as quorum sensing (QS). To analyze the effect of growth inhibition on QS, the activity of ciprofloxacin, an antibiotic that impairs cell division, was compared to that of phloretin at 50% MIC. Unlike phloretin, the antibiotic hardly affected the tested phenotypes. The use of DH5α, a QS-negative Escherichia coli strain, transformed with an AHL synthase (ExpI) from Pb1692, allowed to validate direct inhibition of AHL production by phloretin, as demonstrated by two biosensor strains, Chromobacterium violaceaum (CV026) and E. coli (pSB401). Expression analysis of virulence-related genes revealed downregulation of QS-regulated genes (expI, expR, luxS, rsmB), plant cell wall degrading enzymes genes (pel, peh and prt) and motility genes (motA, fim, fliA, flhC and flhD) following exposure to both phloretin concentrations. The results support the inhibition of ExpI activity by phloretin. Docking simulations were used to predict the molecular associations between phloretin and the active site of ExpI, to suggest a likely mode of action for the compound's inhibition of virulence.

10.
Life (Basel) ; 11(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805385

RESUMO

The activity of a new, terpene-based formulation, code-named NT-VRL-1, against Human Coronavirus (HCoV) strain 229E was evaluated in human lung fibroblasts (MRC-5 cells), with and without the addition of cannabidiol (CBD). The main constituents in the terpene formulation used for the experiment were beta caryophyllene, eucalyptol, and citral. The tested formulation exhibited an antiviral effect when it was pre-incubated with the host cells prior to virus infection. The combination of NT-VRL-1 with CBD potentiated the antiviral effect better than the positive controls pyrazofurin and glycyrrhizin. There was a strong correlation between the quantitative results from a cell-viability assay and the cytopathic effect seen under the microscope after 72 h. To the best of our knowledge, this is the first report of activity of a combination of terpenes and CBD against a coronavirus.

11.
Hortic Res ; 8(1): 13, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33384417

RESUMO

Soft rot disease caused by Pectobacterium spp. is responsible for severe agricultural losses in potato, vegetables, and ornamentals. The genus Zantedeschia includes two botanical groups of tuberous ornamental flowers that are highly susceptible to the disease. Previous studies revealed that Z. aethiopica, a member of the section Zantedeschia, is significantly more resistant to Pectobacterium spp. than members of the same genus that belong to the section Aestivae. During early infection, we found different patterns of bacterial colonization on leaves of hosts belonging to the different sections. Similar patterns of bacterial colonization were observed on polydimethylsiloxane (PDMS) artificial inert replicas of leaf surfaces. The replicas confirmed the physical effect of leaf texture, in addition to a biochemical plant-bacterium interaction. The differential patterns may be associated with the greater roughness of the abaxial leaf surfaces of Aestivae group that have evolutionarily adapted to mountainous environments, as compared to Zantedeschia group species that have adapted to warm, marshy environments. Transverse leaf sections also revealed compact aerenchyma and reduced the total volume of leaf tissue air spaces in Aestivae members. Finally, an analysis of defense marker genes revealed differential expression patterns in response to infection, with significantly higher levels of lipoxygenase 2 (lox2) and phenylalanine ammonia lyase (pal) observed in the more resistant Z. aethiopica, suggesting greater activation of induced systemic resistance (ISR) mechanisms in this group. The use of Zantedeschia as a model plant sheds light on how natural ecological adaptations may underlay resistance to bacterial soft rot in cultivated agricultural environments.

12.
Microorganisms ; 8(10)2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-32993160

RESUMO

Recent phylogenetic studies have transferred certain isolates from monocot plants previously included in the heterogeneous group of Pectobacteriumcarotovorum (Pc) to a species level termed Pectobacterium aroidearum. The specificity of Pectobacterium associated infections had received less attention, and may be of high scientific and economic importance. Here, we have characterized differential responses of Pectobacterium isolates from potato (WPP14) and calla lily (PC16) on two typical hosts: Brassica oleracea var. capitata (cabbage) a dicot host; and Zantedeschia aethiopica (calla lily) a monocot host. The results revealed clear host specific responses following infection with the two bacterial strains. This was demonstrated by differential production of volatile organic compounds (VOCs) and the expression of plant defense-related genes (pal, PR-1, lox2, ast). A related pattern was observed in bacterial responses to each of the host's extract, with differential expression of virulence-related determinants and genes associated with quorum-sensing and plant cell wall-degrading enzymes. The differences were associated with each strain's competence on its respective host.

13.
Plants (Basel) ; 9(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882997

RESUMO

Climate change has been shown to have a substantial impact on agriculture and high temperatures and heat stress are known to have many negative effects on the vegetative and reproductive phases of plants. In a previous study, we addressed the effects of high temperature environments on olive oil yield and quality, by comparing the fruit development and oil accumulation and quality of five olive cultivars placed in high temperature and moderate temperature environments. The aim of the current study was to explore the molecular mechanism resulting in the negative effect of a high temperature environment on oil quantity and quality. We analyzed the transcriptome of two extreme cultivars, 'Barnea', which is tolerant to high temperatures in regard to quantity of oil production, but sensitive regarding its quality, and 'Souri', which is heat sensitive regarding quantity of oil produced, but relatively tolerant regarding its quality. Transcriptome analyses have been carried out at three different time points during fruit development, focusing on the genes involved in the oil biosynthesis pathway. We found that heat-shock protein expression was induced by the high temperature environment, but the degree of induction was cultivar dependent. The 'Barnea' cultivar, whose oil production showed greater tolerance to high temperatures, exhibited a larger degree of induction than the heat sensitive 'Souri'. On the other hand, many genes involved in olive oil biosynthesis were found to be repressed as a response to high temperatures. OePDCT as well as OeFAD2 genes showed cultivar dependent expression patterns according to their heat tolerance characteristics. The transcription factors OeDof4.3, OeWRI1.1, OeDof4.4 and OeWRI1.2 were identified as key factors in regulating the oil biosynthesis pathway in response to heat stress, based on their co-expression characteristics with other genes involved in this pathway. Our results may contribute to identifying or developing a more heat tolerant cultivar, which will be able to produce high yield and quality oil in a future characterized by global warming.

14.
PLoS One ; 15(4): e0231956, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32324774

RESUMO

Global warming is predicted to have a negative effect on plant growth due to the damaging effect of high temperatures. In order to address the effect of high temperature environments on olive oil yield and quality, we compared its effect on the fruit development of five olive cultivars placed in a region noted for its high summer temperatures, with trees of the same cultivars placed in a region of relatively mild summers. We found that the effects of a high temperature environment are genotype dependent and in general, high temperatures during fruit development affected three important traits: fruit weight, oil concentration and oil quality. None of the tested cultivars exhibited complete heat stress tolerance. Final dry fruit weight at harvest of the 'Barnea' cultivar was not affected by the high temperature environment, whereas the 'Koroneiki', 'Coratina', 'Souri' and 'Picholine' cultivars exhibited decreased dry fruit weight at harvest in response to higher temperatures by 0.2, 1, 0.4 and 0.2 g respectively. The pattern of final oil concentration was also cultivar dependent, 'Barnea', 'Coratina' and 'Picholine' not being affected by the high temperature environment, whereas the 'Koroneiki' and 'Souri' cultivars showed a decreased dry fruit oil concentration at harvest under the same conditions by 15 and 8% respectively. Regarding the quality of oil produced, the 'Souri' cultivar proved more tolerant to a high temperature environment than any other of the cultivars analyzed in this study. These results suggest that different olive cultivars have developed a variety of mechanisms in dealing with high temperatures. Elucidation of the mechanism of each of these responses may open the way to development of a variety of olives broadly adapted to conditions of high temperatures.


Assuntos
Qualidade dos Alimentos , Azeite de Oliva/metabolismo , Temperatura , Clima , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Genótipo , Olea/genética , Olea/crescimento & desenvolvimento , Olea/metabolismo
15.
Food Chem Toxicol ; 137: 111135, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31968226

RESUMO

Furanocoumarins are the main compounds responsible for the food-drug interactions known as the grapefruit effect, which is caused by the inhibition of CYP3A4-mediated drug metabolism. We evaluated the effects of two new, low-furanocoumarin grapefruit cultivars on CYP3A4 activity and the roles of different furanocoumarins, individually and together with other juice compounds, in the inhibition of CYP3A4 by grapefruit. Whereas a standard grapefruit cultivar inhibited CYP3A4 activity in a dose-dependent manner, neither of the two examined low-furanocoumarin cultivars had an inhibitory effect. Despite the fact that bergamottin and 6',7'-dihydroxybergamottin are weak inhibitors of CYP3A4, their relatively high levels in grapefruit make them the leading cause of the grapefruit effect. We found that furanocoumarins together with other juice compounds inhibit CYP3A4 in an additive manner. In silico docking simulation was employed, and differentiated between high- and low-potency inhibitors, suggesting that modeling may be useful for identifying potentially harmful food-drug interactions.


Assuntos
Citrus paradisi/química , Inibidores das Enzimas do Citocromo P-450/química , Furocumarinas/química , Extratos Vegetais/química , Citrus paradisi/classificação , Inibidores das Enzimas do Citocromo P-450/isolamento & purificação , Sistema Enzimático do Citocromo P-450/química , Frutas/química , Furocumarinas/isolamento & purificação , Cinética , Extratos Vegetais/isolamento & purificação
16.
Biochem Pharmacol ; 173: 113699, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31756325

RESUMO

Ingestion of (-)-epicatechin flavanols reverses endothelial dysfunction by increasing flow mediated dilation and by reducing vascular inflammation and oxidative stress, monocyte-endothelial cell adhesion and transendothelial monocyte migration in vitro and in vivo. This involves multiple changes in gene expression and epigenetic DNA methylation by poorly understood mechanisms. By in silico docking and molecular modeling we demonstrate favorable binding of different glucuronidated, sulfated or methylated (-)-epicatechin metabolites to different DNA methyltransferases (DNMT1/DNMT3A). In favor of this model, genome-wide DNA methylation profiling of endothelial cells treated with TNF and different (-)-epicatechin metabolites revealed specific DNA methylation changes in gene networks controlling cell adhesion-extravasation endothelial hyperpermeability as well as gamma-aminobutyric acid, renin-angiotensin and nitric oxide hypertension pathways. Remarkably, blood epigenetic profiles of an 8 weeks intervention with monomeric and oligomeric flavanols (MOF) including (-)-epicatechin in male smokers revealed individual epigenetic gene changes targeting similar pathways as the in vitro exposure experiments in endothelial cells. Furthermore, epigenetic changes following MOF diet intervention oppose atherosclerosis associated epigenetic changes. In line with biological data, the individual epigenetic response to a MOF diet is associated with different vascular health parameters (glutathione peroxidase 1 and endothelin-1 expression, acetylcholine-mediated microvascular response), in part involving systemic shifts in blood immune cell types which reduce the neutrophil-lymphocyte ratio (NLR). Altogether, our study suggests that different (-)-epicatechin metabolites promote vascular health in part via epigenetic reprogramming of endothelial-immune cell signaling and reversing systemic low-grade inflammation.


Assuntos
Catequina/farmacologia , Endotélio Vascular/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Inflamação/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Catequina/química , Catequina/metabolismo , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Simulação de Acoplamento Molecular , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Migração Transendotelial e Transepitelial/genética
17.
Eur J Nutr ; 58(Suppl 2): 65-73, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31637468

RESUMO

BACKGROUND: A healthy diet and optimal lifestyle choices are amongst the most important actions for the prevention of cardiometabolic diseases. Despite this, it appears difficult to convince consumers to select more nutritious foods. Furthermore, the development and production of healthier foods do not always lead to economic profits for the agro-food sector. Most dietary recommendations for the general population represent a "one-size-fits-all approach" which does not necessarily ensure that everyone has adequate exposure to health-promoting constituents of foods. Indeed, we now know that individuals show a high variability in responses when exposed to specific nutrients, foods, or diets. PURPOSE: This review aims to highlight our current understanding of inter-individual variability in response to dietary bioactives, based on the integration of findings of the COST Action POSITIVe. We also evaluate opportunities for translation of scientific knowledge on inter-individual variability in response to dietary bioactives, once it becomes available, into practical applications for stakeholders, such as the agro-food industry. The potential impact from such applications will form an important impetus for the food industry to develop and market new high quality and healthy foods for specific groups of consumers in the future. This may contribute to a decrease in the burden of diet-related chronic diseases.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Dieta Vegetariana/métodos , Promoção da Saúde/métodos , Doenças Metabólicas/prevenção & controle , Compostos Fitoquímicos/administração & dosagem , Humanos
18.
Molecules ; 24(16)2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31405174

RESUMO

Ornithogalum is an ornamental flowering species that grows from a bulb and is highly susceptible to soft-rot disease caused by Pectobacterium carotovorum (Pc). Interspecific hybridization between O. thyrsoides and O. dubium yielded hybrids with enhanced resistance to that pathogen. The hybrids displayed distinct phenolic-compound profiles with several peaks that were specifically heightened following Pc infection. Three of these compounds were isolated and identified as novel kaempferol O-tri-glycosides. The structures of these compounds were elucidated using reversed phase high-performance liquid chromatography (RP-LC), RP-LC coupled to high-resolution mass spectrometry (RP-LC-MS), and nuclear magnetic resonance (NMR) (1D 1H and 13C, DEPT, HMQC, HMBC, COSY, and NOE), in order to achieve pure and defined compounds data. The new compounds were finally identified as kaempferol 3-O-[4-O-α-l-(3-O-acetic)-rhamnopyranosyl-6-O-ß-d-xylopyranosyl]-ß-d-glucopyranoside, kaempferol 3-O-[4-O-α-l-(2-O-acetic)-rhamnopyranosyl-6-O-ß-d-xylopyranosyl]-ß-d-glucopyranoside and kaempferol 3-O-[4-O-α-l-(2,3-O-diacetic)-rhamnopyranosyl-6-O-ß-d-xylopyranosyl]-ß-d-glucopyranoside.


Assuntos
Glicosídeos , Quempferóis , Ornithogalum/microbiologia , Pectobacterium carotovorum/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Cruzamentos Genéticos , Glicosídeos/química , Glicosídeos/farmacologia , Quempferóis/química , Quempferóis/farmacologia , Relação Estrutura-Atividade
19.
J Sci Food Agric ; 99(14): 6342-6349, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31271222

RESUMO

BACKGROUND: Irrigation of olives increases fruit and oil yields. Due to scarcity of freshwater, low-quality water including recycled wastewater (RWW) is utilized in orchards. Here, effects of irrigation with RWW and of fertilization on the composition and quality of olive oil were studied. RESULTS: Long-term RWW irrigation of 'Barnea' and 'Leccino' olive had no significant negative effects on either oil composition or quality parameters, including free fatty acids (FFAs), peroxide value (PV), total phenolics content (TPC), fatty acid profiles and organoleptic characteristics. The average FFA contents for both cultivars were less than 0.8% during most of the experimental period, except the seasons 2009 and 2012-2013 for Barnea where the values were raised up to 1.4%. The measured PV levels were less than 9 and 5 mmol O2 kg-1 oil for Barnea and Leccino, respectively. In the last season of the experiment for each cultivar, higher TPC were observed in oils obtained from RWW irrigation with reduced fertilization (Re-) as compared to the treatments with the recommended fertilization [freshwater irrigation (Fr) and RWW irrigation (Re+) with standard dose of fertilizers], where the TPC increment exceeded 70% in Barnea and 25% in Leccino. The treatments had only minor effects on the fatty acid profile, reflected in slightly altered levels of C18:2 and C18:3 fatty acids. CONCLUSION: The use of RWW, combined with the consideration of nutrients arriving with such water to provide appropriate fertilization, was found suitable for olive irrigation to ensure optimal yields while preserving oil quality. © 2019 Society of Chemical Industry.


Assuntos
Irrigação Agrícola/métodos , Olea/química , Azeite de Oliva/química , Águas Residuárias/análise , Irrigação Agrícola/instrumentação , Ácidos Graxos/química , Frutas/química , Frutas/crescimento & desenvolvimento , Olea/crescimento & desenvolvimento , Fenóis/química , Controle de Qualidade , Reciclagem
20.
Front Genet ; 10: 224, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941162

RESUMO

Can mutations in Cytochrome P450 3A4 (CYP3A4), the major food- and drug-metabolizing enzyme, serve as biomarkers for personalized precise medicine? Classical genetic studies provide only limited data regarding the frequencies of CYP3A4 mutations and their role in food-drug interactions. Here, in an analysis of one large database of 141,456 individuals, we found 856 SNPs (single nucleotide polymorphism), of which 312 are missense mutations, far more than the previously reported dozens. Analyzing the data further, it is demonstrated that the frequency of mutations differs among ethnic groups. Hierarchical clustering divided the mutations to seven groups, each corresponding to a specific ethnicity. To the best of our knowledge this is the first comprehensive analysis of CYP3A4 allele frequencies in distinct ethnic groups. We suggest ethnicity based classification of CYP3A4 SNPs as the first step toward precise diet and medicine. Understanding which and when polymorphism might have clinical significance is a tremendously complex task. Using modeling approach, we could predict changes in the binding poses of ligands in the active site of single variants. These changes might imply clinical effects of the overlooked protein-altering CYP3A4 mutations, by modifying drug metabolism and FDI. It may be concluded that dietary habits, and hence FDI, are matters of ethnicity. Consequently, ethnic-related polymorphism in CYP3A4 and diet may be one underlying mechanism of response to medical regimes. The approaches presented here have the power to highlight mutations of clinical relevance in any gene of interest, thus to complement the arsenal of classic genetic screening tools.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA