Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neuroimaging ; 3: 1349415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550242

RESUMO

Diffusion magnetic resonance imaging is sensitive to the microstructural properties of brain tissue. However, estimating clinically and scientifically relevant microstructural properties from the measured signals remains a highly challenging inverse problem that machine learning may help solve. This study investigated if recently developed rotationally invariant spherical convolutional neural networks can improve microstructural parameter estimation. We trained a spherical convolutional neural network to predict the ground-truth parameter values from efficiently simulated noisy data and applied the trained network to imaging data acquired in a clinical setting to generate microstructural parameter maps. Our network performed better than the spherical mean technique and multi-layer perceptron, achieving higher prediction accuracy than the spherical mean technique with less rotational variance than the multi-layer perceptron. Although we focused on a constrained two-compartment model of neuronal tissue, the network and training pipeline are generalizable and can be used to estimate the parameters of any Gaussian compartment model. To highlight this, we also trained the network to predict the parameters of a three-compartment model that enables the estimation of apparent neural soma density using tensor-valued diffusion encoding.

2.
Magn Reson Med ; 87(4): 1903-1913, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34841566

RESUMO

PURPOSE: Several neurological conditions are associated with microstructural changes in the hippocampus that can be observed using DWI. Imaging studies often use protocols with whole-brain coverage, imposing limits on image resolution and worsening partial-volume effects. Also, conventional single-diffusion-encoding methods confound microscopic diffusion anisotropy with size variance of microscopic diffusion environments. This study addresses these issues by implementing a multidimensional diffusion-encoding protocol for microstructural imaging of the hippocampus at high resolution. METHODS: The hippocampus of 8 healthy volunteers was imaged at 1.5-mm isotropic resolution with a multidimensional diffusion-encoding sequence developed in house. Microscopic fractional anisotropy (µFA) and normalized size variance (CMD ) were estimated using q-space trajectory imaging, and their values were compared with DTI metrics. The overall scan time was 1 hour. The reproducibility of the protocol was confirmed with scan-rescan experiments, and a shorter protocol (14 minutes) was defined for situations with time constraints. RESULTS: Mean µFA (0.47) was greater than mean FA (0.20), indicating orientation dispersion in hippocampal tissue microstructure. Mean CMD was 0.17. The reproducibility of q-space trajectory imaging metrics was comparable to DTI, and microstructural metrics in the healthy hippocampus are reported. CONCLUSION: This work shows the feasibility of high-resolution microscopic anisotropy imaging in the human hippocampus at 3 T and provides reference values for microstructural metrics in a healthy hippocampus.


Assuntos
Imagem de Tensor de Difusão , Hipocampo , Anisotropia , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão/métodos , Hipocampo/diagnóstico por imagem , Humanos , Reprodutibilidade dos Testes
3.
Neuroimage ; 247: 118833, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34929382

RESUMO

Noninvasively detecting and characterizing modulations in cellular scale micro-architecture remains a desideratum for contemporary neuroimaging. Diffusion MRI (dMRI) has become the mainstay methodology for probing microstructure, and, in ischemia, its contrasts have revolutionized stroke management. Diffusion kurtosis imaging (DKI) has been shown to significantly enhance the sensitivity of stroke detection compared to its diffusion tensor imaging (DTI) counterparts. However, the interpretation of DKI remains ambiguous as its contrast may arise from competing kurtosis sources related to the anisotropy of tissue components, diffusivity variance across components, and microscopic kurtosis (e.g., arising from cross-sectional variance, structural disorder, and restriction). Resolving these sources may be fundamental for developing more specific imaging techniques for stroke management, prognosis, and understanding its pathophysiology. In this study, we apply Correlation Tensor MRI (CTI) - a double diffusion encoding (DDE) methodology recently introduced for deciphering kurtosis sources based on the unique information captured in DDE's diffusion correlation tensors - to investigate the underpinnings of kurtosis measurements in acute ischemic lesions. Simulations for the different kurtosis sources revealed specific signatures for cross-sectional variance (representing neurite beading), edema, and cell swelling. Ex vivo CTI experiments at 16.4 T were then performed in an experimental photothrombotic stroke model 3 h post-stroke (N = 10), and successfully separated anisotropic, isotropic, and microscopic non-Gaussian diffusion sources in the ischemic lesions. Each of these kurtosis sources provided unique contrasts in the stroked area. Particularly, microscopic kurtosis was shown to be a primary "driver" of total kurtosis upon ischemia; its large increases, coupled with decreases in anisotropic kurtosis, are consistent with the expected elevation in cross-sectional variance, likely linked to beading effects in small objects such as neurites. In vivo experiments at 9.4 T at the same time point (3 h post ischemia, N = 5) demonstrated the stability and relevance of the findings and showed that fixation is not a dominant confounder in our findings. In future studies, the different CTI contrasts may be useful to address current limitations of stroke imaging, e.g., penumbra characterization, distinguishing lesion progression form tissue recovery, and elucidating pathophysiological correlates.


Assuntos
Imagem de Tensor de Difusão/métodos , Interpretação de Imagem Assistida por Computador/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Animais , Anisotropia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Método de Monte Carlo , Acidente Vascular Cerebral/fisiopatologia
4.
Neuroimage ; 242: 118445, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34375753

RESUMO

Microscopic diffusion anisotropy imaging using diffusion-weighted MRI and multidimensional diffusion encoding is a promising method for quantifying clinically and scientifically relevant microstructural properties of neural tissue. Several methods for estimating microscopic fractional anisotropy (µFA), a normalized measure of microscopic diffusion anisotropy, have been introduced but the differences between the methods have received little attention thus far. In this study, the accuracy and precision of µFA estimation using q-space trajectory encoding and different signal models were assessed using imaging experiments and simulations. Three healthy volunteers and a microfibre phantom were imaged with five non-zero b-values and gradient waveforms encoding linear and spherical b-tensors. Since the ground-truth µFA was unknown in the imaging experiments, Monte Carlo random walk simulations were performed using axon-mimicking fibres for which the ground truth was known. Furthermore, parameter bias due to time-dependent diffusion was quantified by repeating the simulations with tuned waveforms, which have similar power spectra, and with triple diffusion encoding, which, unlike q-space trajectory encoding, is not based on the assumption of time-independent diffusion. The truncated cumulant expansion of the powder-averaged signal, gamma-distributed diffusivities assumption, and q-space trajectory imaging, a generalization of the truncated cumulant expansion to individual signals, were used to estimate µFA. The gamma-distributed diffusivities assumption consistently resulted in greater µFA values than the second order cumulant expansion, 0.1 greater when averaged over the whole brain. In the simulations, the generalized cumulant expansion provided the most accurate estimates. Importantly, although time-dependent diffusion caused significant overestimation of µFA using all the studied methods, the simulations suggest that the resulting bias in µFA is less than 0.1 in human white matter.


Assuntos
Anisotropia , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/instrumentação , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador/instrumentação , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Substância Branca/diagnóstico por imagem
5.
Magn Reson Med ; 83(5): 1698-1710, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31651995

RESUMO

PURPOSE: Double diffusion encoding (DDE) MRI enables the estimation of microscopic diffusion anisotropy, yielding valuable information on tissue microstructure. A recent study proposed that the acquisition of rotationally invariant DDE metrics, typically obtained using a spherical "5-design," could be greatly simplified by assuming Gaussian diffusion, facilitating reduced acquisition times that are more compatible with clinical settings. Here, we aim to validate the new minimal acquisition scheme against the standard DDE 5-design, and to quantify the proposed method's noise robustness to facilitate future clinical use. THEORY AND METHODS: DDE MRI experiments were performed on both ex vivo and in vivo rat brains at 9.4 T using the 5-design and the proposed minimal design and taking into account the difference in the number of acquisitions. The ensuing microscopic fractional anisotropy (µFA) maps were compared over a range of b-values up to 5000 s/mm2 . Noise robustness was studied using analytical calculations and numerical simulations. RESULTS: The minimal protocol quantified µFA at an accuracy comparable to the estimates obtained by means of the more theoretically robust DDE 5-design. µFA's sensitivity to noise was found to strongly depend on compartment anisotropy and tensor magnitude in a nonlinear manner. When µFA < 0.75 or when mean diffusivity is particularly low, very high signal-to-noise ratio is required for precise quantification of µFA. CONCLUSION: Our work supports using DDE for quantifying microscopic diffusion anisotropy in clinical settings but raises hitherto overlooked precision issues when measuring µFA with DDE and typical clinical signal-to-noise ratio.


Assuntos
Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Anisotropia , Encéfalo/diagnóstico por imagem , Difusão , Distribuição Normal
6.
Magn Reson Med ; 82(6): 2160-2168, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31243814

RESUMO

PURPOSE: To demonstrate the feasibility of multidimensional diffusion MRI to probe and quantify microscopic fractional anisotropy (µFA) in human kidneys in vivo. METHODS: Linear tensor encoded (LTE) and spherical tensor encoded (STE) renal diffusion MRI scans were performed in 10 healthy volunteers. Respiratory triggering and image registration were used to minimize motion artefacts during the acquisition. Kidney cortex-medulla were semi-automatically segmented based on fractional anisotropy (FA) values. A model-free analysis of LTE and STE signal dependence on b-value in the renal cortex and medulla was performed. Subsequently, µFA was estimated using a single-shell approach. Finally, a comparison of conventional FA and µFA is shown. RESULTS: The hallmark effect of µFA (divergence of LTE and STE signal with increasing b-value) was observed in all subjects. A statistically significant difference between LTE and STE signal was found in the cortex and medulla, starting from b = 750 s/mm2 and b = 500 s/mm2 , respectively. This difference was maximal at the highest b-value sampled (b = 1000 s/mm2 ) which suggests that relatively high b-values are required for µFA mapping in the kidney compared to conventional FA. Cortical and medullary µFA were, respectively, 0.53 ± 0.09 and 0.65 ± 0.05, both respectively higher than conventional FA (0.19 ± 0.02 and 0.40 ± 0.02). CONCLUSION: The feasibility of combining LTE and STE diffusion MRI to probe and quantify µFA in human kidneys is demonstrated for the first time. By doing so, we show that novel microstructure information-not accessible by conventional diffusion encoding-can be probed by multidimensional diffusion MRI. We also identify relevant technical limitations that warrant further development of the technique for body MRI.


Assuntos
Anisotropia , Imagem de Difusão por Ressonância Magnética , Rim/diagnóstico por imagem , Adulto , Artefatos , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador/métodos , Medula Renal/diagnóstico por imagem , Masculino , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA