Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 9: e10962, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33665038

RESUMO

Sonneratia caseolaris is a pioneer species in mangrove. It can naturally grow in both saltwater and freshwater. The study was aimed at investigating and comparing the anatomical character of the S. caseolaris plants growing in different conditions and how they coped with salinity. The anatomical characteristics of roots, stems, petioles and leaf blade were investigated. The plant samples were prepared into permanent slides using a paraffin method, while the wood samples were made into permanent slides using a sliding microtome technique. Tissue clearing of leaf blade and scanning electron microscopic analysis of wood were performed. In addition, sodium chloride content in various organs and tissues was examined. It was found that cable root, stem and leaf blade showed some different anatomical characteristics between the two conditions. Periderm is a prominent tissue in saltwater roots. Tanniferous cells were observed in pneumatophores, petioles, stems and leaf blades of saltwater plants, but not found in pneumatophores and lamina of freshwater plants. Mesophyll thickness was lower in the saltwater condition. The vessel density was significantly higher in the saltwater condition than in the freshwater condition, whereas the vessel diameters in the freshwater condition were significantly higher than those in the saltwater condition. From the results, it can be concluded that root periderm plays an important role in salt exclusion, and the occurrence of tanniferous cells is associated with salt elimination.

2.
Biotechnol Appl Biochem ; 64(6): 938-943, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27696529

RESUMO

To evaluate the potential of algal biotechnology to replace traditional agriculture in northeastern Thailand, an open raceway cultivation system was developed to produce biomass and beta-carotene. Dunaliella salina KU 11 isolated from local saline soil was cultured in open raceway tanks using brine and saline lake water. Grown in modified Johnson's medium (with 2-3.5 M NaCl), the algae reached a maximum cell density on the fourth day (1.8 × 106 cells mL-1 ). Increasing KNO3 and NaHCO3 from 0.5 and 0.043 g L-1 to 1 and 2.1 g L-1 , respectively, significantly improved the yields of biomass (0.33 g L-1 ) and beta-carotene (19 mg L-1 ). Expected profits for algal production were evaluated, and it was found that this strain was suitable for outdoor cultivation and the developing algal industry in northeastern Thailand could produce high economic benefits (at least $64,120 per year per 0.16 ha).


Assuntos
Lagos/química , Microalgas/metabolismo , Lagoas/química , Sais/química , Água/química , Biomassa , Biotecnologia , Microalgas/citologia , Microalgas/isolamento & purificação , Tailândia , beta Caroteno/biossíntese , beta Caroteno/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA