Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Neuromodulation ; 27(3): 509-519, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36797194

RESUMO

BACKGROUND: Deep brain stimulation (DBS) programming is time intensive. Recent advances in sensing technology of local field potentials (LFPs) may enable improvements. Few studies have compared the use of this technology with standard of care. OBJECTIVE/HYPOTHESIS: Sensing technology of subthalamic nucleus (STN) DBS leads in Parkinson's disease (PD) is reliable and predicts the optimal contacts and settings as predicted by clinical assessment. MATERIALS AND METHODS: Five subjects with PD (n = 9 hemispheres) with bilateral STN DBS and sensing capable battery replacement were recruited. An LFP sensing review of all bipolar contact pairs was performed three times. Contact with the maximal beta peak power (MBP) was then clinically assessed in a double-blinded fashion, and five conditions were tested: 1) entry settings, 2) off stimulation, 3) MBP at 30 µs, 4) MBP at 60 µs, and 5) MBP at 90 µs. RESULTS: Contact and frequency of the MBP power in all hemispheres did not differ across sessions. The entry settings matched with the contact with the MBP power in 5 of 9 hemispheres. No clinical difference was evident in the stimulation conditions. The clinician and subject preferred settings determined by MBP power in 7 of 9 and 5 of 7 hemispheres, respectively. CONCLUSIONS: This study indicates that STN LFPs in PD recorded directly from contacts of the DBS lead provide consistent recordings across the frequency range and a reliably detected beta peak. Furthermore, programming based on the MBP power provides at least clinical equivalence to standard of care programming with STN DBS.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Projetos Piloto , Núcleo Subtalâmico/fisiologia
2.
Front Neurol ; 14: 1233684, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37602243

RESUMO

Introduction: Deep brain stimulation (DBS) is an effective and standard-of-care therapy for Parkinson's Disease and other movement disorders when symptoms are inadequately controlled with conventional medications. It requires expert care for patient selection, surgical targeting, and therapy titration. Despite the known benefits, racial/ethnic disparities in access have been reported. Technological advancements with smartphone-enabled devices may influence racial disparities. Real-world evidence investigations can shed further light on barriers to access and demographic disparities for DBS patients. Methods: A retrospective cross-sectional study was performed using Medicare claims linked with manufacturer patient data tracking to analyze 3,869 patients who received DBS. Patients were divided into two categories: traditional omnidirectional DBS systems with dedicated proprietary controllers ("traditional"; n = 3,256) and directional DBS systems with smart controllers ("smartphone-enabled"; n = 613). Demographics including age, sex, and self-identified race/ethnicity were compared. Categorical demographics, including race/ethnicity and distance from implanting facility, were analyzed for the entire population. Results: A significant disparity in DBS utilization was evident. White individuals comprised 91.4 and 89.9% of traditional and smartphone-enabled DBS groups, respectively. Non-White patients were significantly more likely to live closer to implanting facilities compared with White patients. Conclusion: There is great racial disparity in utilization of DBS therapy. Smartphone-enabled systems did not significantly impact racial disparities in receiving DBS. Minoritized patients were more likely to live closer to their implanting facility than White patients. Further research is warranted to identify barriers to access for minoritized patients to receive DBS. Technological advancements should consider the racial discrepancy of DBS utilization in future developments.

3.
Mov Disord Clin Pract ; 10(6): 987-991, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37332654

RESUMO

Background: Technological advancements in deep brain stimulation (DBS) require methodological changes in programming. Fractionalization poses significant practical challenges for the most common approach for assessing DBS efficacy, monopolar review (MR). Objectives: Two DBS programming methods: MR and fixed parameter vertical and horizontal fractionalization (FPF) were compared. Methods: A two-phase process of vertical and horizontal FPF was performed. MR was conducted thereafter. After a short wash-out period, both optimal configurations determined by MR and FPF were tested in a double-blind randomized manner. Results: Seven PD patients were enrolled, providing 11 hemispheres to compare the two conditions. In all subjects, the blinded examiner selected a directional or fractionalization configuration. There was no significant difference in clinical benefits between MR and FPF. FPF was the preferred method for initial programming as selected by subject and clinician. Conclusions: FPF programming is a viable and efficient methodology that may be incorporated into clinical practice.

4.
J Neurophysiol ; 129(6): 1492-1504, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37198135

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons and dysregulation of the basal ganglia. Cardinal motor symptoms include bradykinesia, rigidity, and tremor. Deep brain stimulation (DBS) of select subcortical nuclei is standard of care for medication-refractory PD. Conventional open-loop DBS delivers continuous stimulation with fixed parameters that do not account for a patient's dynamic activity state or medication cycle. In comparison, closed-loop DBS, or adaptive DBS (aDBS), adjusts stimulation based on biomarker feedback that correlates with clinical state. Recent work has identified several neurophysiological biomarkers in local field potential recordings from PD patients, the most promising of which are 1) elevated beta (∼13-30 Hz) power in the subthalamic nucleus (STN), 2) increased beta synchrony throughout basal ganglia-thalamocortical circuits, notably observed as coupling between the STN beta phase and cortical broadband gamma (∼50-200 Hz) amplitude, and 3) prolonged beta bursts in the STN and cortex. In this review, we highlight relevant frequency and time domain features of STN beta measured in PD patients and summarize how spectral beta power, oscillatory beta synchrony, phase-amplitude coupling, and temporal beta bursting inform PD pathology, neurosurgical targeting, and DBS therapy. We then review how STN beta dynamics inform predictive, biomarker-driven aDBS approaches for optimizing PD treatment. We therefore provide clinically useful and actionable insight that can be applied toward aDBS implementation for PD.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Gânglios da Base , Tremor/terapia , Ritmo beta
5.
Mov Disord Clin Pract ; 10(1): 94-100, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36704077

RESUMO

Background: Functional movement disorders (FMD) are a commonly under-recognized diagnosis in patients with underlying neurodegenerative diseases. FMD have been observed in patients undergoing deep brain stimulation (DBS) for Parkinson's disease (PD) and other movement disorders. The prevalence of coexisting FMD among movement disorder-related DBS patients is unknown, and it may occur more often than previously recognized. Methods: We retrospectively assessed the relative prevalence and clinical characteristics of FMD occurring post-DBS, in PD and dystonia patients (FMD+, n = 29). We compared this cohort with age at surgery-, sex-, and diagnosis-matched subjects without FMD post-DBS (FMD-, n = 29). Results: Both the FMD prevalence (0.2%-2.1%) and the number of cases/DBS procedures/year varied across centers (0.15-3.65). A total of nine of 29 FMD+ cases reported worse outcomes following DBS. Although FMD+ and FMD- manifested similar features, FMD+ showed higher psychiatric comorbidity. Conclusions: DBS may be complicated by the development of FMD in a subset of patients, particularly those with pre-morbid psychiatric conditions.

6.
Neurology ; 100(15): e1529-e1539, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36657992

RESUMO

BACKGROUND AND OBJECTIVES: Multiple system atrophy (MSA) is a progressive neurodegenerative disorder caused by the abnormal accumulation of α-synuclein in the nervous system. Clinical features include autonomic and motor dysfunction, which overlap with those of Parkinson disease (PD), particularly at early disease stages. There is an unmet need for accurate diagnostic and prognostic biomarkers for MSA and, specifically, a critical need to distinguish MSA from other synucleinopathies, particularly PD. The purpose of the study was to develop a unique cutaneous pathologic signature of phosphorylated α-synuclein that could distinguish patients with MSA from patients with PD and healthy controls. METHODS: We studied 31 patients with MSA and 54 patients with PD diagnosed according to current clinical consensus criteria. We also included 24 matched controls. All participants underwent neurologic examinations, autonomic testing, and skin biopsies at 3 locations. The density of intraepidermal, sudomotor, and pilomotor nerve fibers was measured. The deposition of phosphorylated α-synuclein was quantified. Results were compared with clinical rating assessments and autonomic function test results. RESULTS: Patients with PD had reduced nerve fiber densities compared with patients with MSA (p < 0.05, all fiber types). All patients with MSA and 51/54 with PD had evidence of phosphorylated α-synuclein in at least one skin biopsy. No phosphorylated α-synuclein was detected in controls. Patients with MSA had greater phosphorylated α-synuclein deposition (p < 0.0001) and more widespread peripheral distribution (p < 0.0001) than patients with PD. These results provided >90% sensitivity and specificity in distinguishing between the 2 disorders. DISCUSSION: α-synuclein is present in the peripheral autonomic nerves of patients with MSA and when combined with synuclein distribution accurately distinguishes MSA from PD. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that measurement of phosphorylated α-synuclein in skin biopsies can differentiate patients with MSA from those with PD.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Humanos , alfa-Sinucleína , Doença de Parkinson/diagnóstico , Doença de Parkinson/patologia , Atrofia de Múltiplos Sistemas/diagnóstico , Atrofia de Múltiplos Sistemas/patologia , Pele/patologia , Degeneração Neural/patologia
7.
Neurol Clin Pract ; 12(6): 429-437, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36540151

RESUMO

Implementation of palliative care (PC) in neurology settings may improve symptom control and quality of life and reduce acute care admissions. The benefits of team-based PC for patients with Parkinson disease have been established through rigorous evidence standards including randomized controlled trials. However, evidence on implementation costs and return on investment (ROI) is unknown and may guide other providers and systems considering this model of care. We applied time-driven activity-based costing with reimbursable visits calculated using Medicare reimbursement rates in Colorado and current procedural technology codes to 2 outpatient clinics at the University of Colorado Hospital: neurology PC and movement disorders. Per-patient ROI was calculated as the ratio of the incremental difference in financial revenues divided by the incremental difference in investment to expand PC services. The cost per new patient was $154 and $98 for neuropalliative and movement disorders clinics, respectively. Established patient visit costs were $82 and $41 for the neuropalliative care and movement disorders clinics, respectively. The neurology PC clinic had per-patient revenue for new and established visits of $297 and $147, respectively, compared with $203 and $141 for new and established visits, respectively, at the comparator clinic. Based on our assumptions, for every $1 invested in expanding PC services, a projected $1.68 will be recouped by the hospital system for new patient visits, and $0.13 will be recouped for established patient visits. These amounts are context dependent, and a calculator was created to allow other systems to estimate costs and ROI. Our results suggest that in an academic medical setting, both neurology PC and movement disorders clinics provided increased revenue to the health system. Opportunities to improve ROI include efficient allocation of personnel to new and established visits, expanding telemedicine, and other cost offsets for complex patients not estimated in this analysis. ROI may also be greater in health systems that benefit from cost savings such as accountable care organizations. Our approach may be applied to other novel care models. Future research efforts will focus on estimating the continued sustainability of this innovative outpatient care model.

8.
Front Surg ; 9: 863921, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211256

RESUMO

Advanced Parkinson's disease (PD) is characterized by increasingly debilitating impaired movements that include motor fluctuations and dyskinesias. At this stage of the disease, pharmacological management can result in unsatisfactory clinical benefits and increase the occurrence of adverse effects, leading to the consideration of advanced therapies. The scope of this review is to provide an overview of currently available therapies for advanced PD, specifically levodopa-carbidopa intestinal gel, continuous subcutaneous apomorphine infusion, radiofrequency ablation, stereotactic radiosurgery, MRI-guided focused ultrasound, and deep brain stimulation. Therapies in clinical trials are also discussed, including novel formulations of subcutaneous carbidopa/levodopa, gene-implantation therapies, and cell-based therapies. This review focuses on the clinical outcomes and adverse effects of the various therapies and also considers patient-specific characteristics that may influence treatment choice. This review can equip providers with updated information on advanced therapies in PD to better counsel patients on the available options.

9.
PLoS One ; 17(10): e0275490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264986

RESUMO

Optimal placement of deep brain stimulation (DBS) therapy for treating movement disorders routinely relies on intraoperative motor testing for target determination. However, in current practice, motor testing relies on subjective interpretation and correlation of motor and neural information. Recent advances in computer vision could improve assessment accuracy. We describe our application of deep learning-based computer vision to conduct markerless tracking for measuring motor behaviors of patients undergoing DBS surgery for the treatment of Parkinson's disease. Video recordings were acquired during intraoperative kinematic testing (N = 5 patients), as part of standard of care for accurate implantation of the DBS electrode. Kinematic data were extracted from videos post-hoc using the Python-based computer vision suite DeepLabCut. Both manual and automated (80.00% accuracy) approaches were used to extract kinematic episodes from threshold derived kinematic fluctuations. Active motor epochs were compressed by modeling upper limb deflections with a parabolic fit. A semi-supervised classification model, support vector machine (SVM), trained on the parameters defined by the parabolic fit reliably predicted movement type. Across all cases, tracking was well calibrated (i.e., reprojection pixel errors 0.016-0.041; accuracies >95%). SVM predicted classification demonstrated high accuracy (85.70%) including for two common upper limb movements, arm chain pulls (92.30%) and hand clenches (76.20%), with accuracy validated using a leave-one-out process for each patient. These results demonstrate successful capture and categorization of motor behaviors critical for assessing the optimal brain target for DBS surgery. Conventional motor testing procedures have proven informative and contributory to targeting but have largely remained subjective and inaccessible to non-Western and rural DBS centers with limited resources. This approach could automate the process and improve accuracy for neuro-motor mapping, to improve surgical targeting, optimize DBS therapy, provide accessible avenues for neuro-motor mapping and DBS implantation, and advance our understanding of the function of different brain areas.


Assuntos
Estimulação Encefálica Profunda , Aprendizado Profundo , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Fenômenos Biomecânicos , Estudo de Prova de Conceito , Extremidade Superior
10.
Sci Rep ; 12(1): 18120, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302865

RESUMO

The expanding application of deep brain stimulation (DBS) therapy both drives and is informed by our growing understanding of disease pathophysiology and innovations in neurosurgical care. Neurophysiological targeting, a mainstay for identifying optimal, motor responsive targets, has remained largely unchanged for decades. Utilizing deep learning-based computer vision and related computational methods, we developed an effective and simple intraoperative approach to objectively correlate neural signals with movements, automating and standardizing the otherwise manual and subjective process of identifying ideal DBS electrode placements. Kinematics are extracted from video recordings of intraoperative motor testing using a trained deep neural network and compared to multi-unit activity recorded from the subthalamic nucleus. Neuro-motor correlations were quantified using dynamic time warping with the strength of a given comparison measured by comparing against a null distribution composed of related neuro-motor correlations. This objective measure was then compared to clinical determinations as recorded in surgical case notes. In seven DBS cases for treatment of Parkinson's disease, 100 distinct motor testing epochs were extracted for which clear clinical determinations were made. Neuro-motor correlations derived by our automated system compared favorably with expert clinical decision making in post-hoc comparisons, although follow-up studies are necessary to determine if improved correlation detection leads to improved outcomes. By improving the classification of neuro-motor relationships, the automated system we have developed will enable clinicians to maximize the therapeutic impact of DBS while also providing avenues for improving continued care of treated patients.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/métodos , Vigília , Resultado do Tratamento , Núcleo Subtalâmico/fisiologia , Doença de Parkinson/cirurgia , Doença de Parkinson/tratamento farmacológico
11.
Mov Disord Clin Pract ; 9(5): 659-675, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35844288

RESUMO

Background: DYT-TUBB4A, formerly known as DYT4, has not been comprehensively described as only one large family and three individual cases have been published. We have recently described an in depth genetic and protein structural analysis of eleven additional cases from four families with four new pathogenic variants. We aim to report on the phenomenology of these cases suffering from DYT-TUBB4A and to perform a comprehensive review of the clinical presentation and treatment responses of all DYT-TUBB4A cases reported in the literature. Cases and Literature Review: The clinical picture was typically characterized by laryngeal dystonia (more than three quarters of all cases), associated with cervical dystonia, upper limb dystonia and frequent generalization. Extension of the dystonia to the lower limbs, creating the famous "hobby horse" gait, was present in more than 20% of cases (in only one of ours). Globus pallidus pars interna (GPi) deep brain stimulation (DBS), performed in 4 cases, led to a good improvement with greatest benefit in motoric and less benefit in laryngeal symptoms. Medical treatment was generally rather poorly effective, except some benefit from propranolol, tetrabenazine and alcohol intake. Conclusion: Laryngeal involvement is a hallmark of DYT-TUBB4A. Symptomatic treatment with GPi-DBS led to the greatest benefit in motoric symptoms. Nevertheless, TUBB4A mutations remain an exceedingly rare cause of laryngeal or other isolated dystonia and regular screening of TUBB4A mutations for isolated dystonias has a very low yield.

12.
Sci Transl Med ; 14(648): eabj2658, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35675433

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic risk factors for Parkinson's disease (PD). Increased LRRK2 kinase activity is thought to impair lysosomal function and may contribute to the pathogenesis of PD. Thus, inhibition of LRRK2 is a potential disease-modifying therapeutic strategy for PD. DNL201 is an investigational, first-in-class, CNS-penetrant, selective, ATP-competitive, small-molecule LRRK2 kinase inhibitor. In preclinical models, DNL201 inhibited LRRK2 kinase activity as evidenced by reduced phosphorylation of both LRRK2 at serine-935 (pS935) and Rab10 at threonine-73 (pT73), a direct substrate of LRRK2. Inhibition of LRRK2 by DNL201 demonstrated improved lysosomal function in cellular models of disease, including primary mouse astrocytes and fibroblasts from patients with Gaucher disease. Chronic administration of DNL201 to cynomolgus macaques at pharmacologically relevant doses was not associated with adverse findings. In phase 1 and phase 1b clinical trials in 122 healthy volunteers and in 28 patients with PD, respectively, DNL201 at single and multiple doses inhibited LRRK2 and was well tolerated at doses demonstrating LRRK2 pathway engagement and alteration of downstream lysosomal biomarkers. Robust cerebrospinal fluid penetration of DNL201 was observed in both healthy volunteers and patients with PD. These data support the hypothesis that LRRK2 inhibition has the potential to correct lysosomal dysfunction in patients with PD at doses that are generally safe and well tolerated, warranting further clinical development of LRRK2 inhibitors as a therapeutic modality for PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Animais , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Lisossomos/metabolismo , Camundongos , Mutação , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Fosforilação
13.
Neurosurg Rev ; 45(4): 2593-2613, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35511309

RESUMO

The neurosurgical treatment of movement disorders, primarily via deep brain stimulation (DBS), is a rapidly expanding and evolving field. Although conventional targets including the subthalamic nucleus (STN) and internal segment of the globus pallidus (GPi) for Parkinson's disease and ventral intermediate nucleus of the thalams (VIM) for tremor provide substantial benefit in terms of both motor symptoms and quality of life, other targets for DBS have been explored in an effort to maximize clinical benefit and also avoid undesired adverse effects associated with stimulation. These novel targets primarily include the rostral zona incerta (rZI), caudal zona incerta (cZI)/posterior subthalamic area (PSA), prelemniscal radiation (Raprl), pedunculopontine nucleus (PPN), substantia nigra pars reticulata (SNr), centromedian/parafascicular (CM/PF) nucleus of the thalamus, nucleus basalis of Meynert (NBM), dentato-rubro-thalamic tract (DRTT), dentate nucleus of the cerebellum, external segment of the globus pallidus (GPe), and ventral oralis (VO) complex of the thalamus. However, reports of outcomes utilizing these targets are scattered and disparate. In order to provide a comprehensive resource for researchers and clinicians alike, we have summarized the existing literature surrounding these novel targets, including rationale for their use, neurosurgical techniques where relevant, outcomes and adverse effects of stimulation, and future directions for research.


Assuntos
Estimulação Encefálica Profunda , Núcleos Intralaminares do Tálamo , Doença de Parkinson , Núcleo Subtalâmico , Estimulação Encefálica Profunda/métodos , Humanos , Doença de Parkinson/terapia , Qualidade de Vida , Núcleo Subtalâmico/cirurgia
15.
Mov Disord Clin Pract ; 9(3): 311-325, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35402651

RESUMO

The MDS Video Challenge continues to be the one of most widely attended sessions at the International Congress. Although the primary focus of this event is the presentation of complex and challenging cases through videos, a number of cases over the years have also presented an unusual or important neuroimaging finding related to the case. We reviewed the previous Video Challenge cases and present here a selection of those cases which incorporated such imaging findings. We have compiled these "imaging pearls" into two anthologies. The first focuses on pearls where the underlying diagnosis was a genetic condition. This second anthology focuses on imaging pearls in cases where the underlying condition was acquired. For each case we present brief clinical details along with neuroimaging findings, the characteristic imaging findings of that disorder and, finally, the differential diagnosis for the imaging findings seen.

16.
World Neurosurg ; 162: e526-e533, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35306197

RESUMO

BACKGROUND: Advanced therapies in neurosurgery, such as deep brain stimulation (DBS), would benefit from improved patient education materials. Three-dimensional (3D) printed anatomical models represent a recent development for improving patient education for neurosurgical procedures. METHODS: In this study, 40 patients undergoing DBS surgery consultation were randomly assigned to 1 of 2 groups: an experimental group, which received a demonstration of DBS therapeutic neuroanatomical targets in a 3D printed brain model plus standard patient education (PE), or a control group, which received standard PE alone. RESULTS: Patients in the DBS model plus PE group showed a significant increase in patient confidence and understanding of the brain structures targeted during a DBS procedure compared with patients in the PE-only group (P < 0.01). There was no difference in perceived risk, comfort, or anxiety related to the procedure. CONCLUSIONS: In the first randomized controlled study to our knowledge of 3D printed models for DBS consultation, our results demonstrate that patients had improved understanding of their therapy with the models. However, the models alone did not affect risk evaluation or comfort with surgery. A 3D printed brain model may help improve patient understanding of DBS surgery.


Assuntos
Estimulação Encefálica Profunda , Letramento em Saúde , Ansiedade , Encéfalo , Estimulação Encefálica Profunda/métodos , Humanos , Encaminhamento e Consulta
17.
Front Neurol ; 12: 765203, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777232

RESUMO

Sleep disturbances, specifically decreases in total sleep time and sleep efficiency as well as increased sleep onset latency and wakefulness after sleep onset, are highly prevalent in patients with Parkinson's disease (PD). Impairment of sleep significantly and adversely impacts several comorbidities in this patient population, including cognition, mood, and quality of life. Sleep disturbances and other non-motor symptoms of PD have come to the fore as the effectiveness of advanced therapies such as deep brain stimulation (DBS) optimally manage the motor symptoms. Although some studies have suggested that DBS provides benefit for sleep disturbances in PD, the mechanisms by which this might occur, as well as the optimal stimulation parameters for treating sleep dysfunction, remain unknown. In patients treated with DBS, electrophysiologic recording from the stimulating electrode, in the form of local field potentials (LFPs), has led to the identification of several findings associated with both motor and non-motor symptoms including sleep. For example, beta frequency (13-30 Hz) oscillations are associated with worsened bradykinesia while awake and decrease during non-rapid eye movement sleep. LFP investigation of sleep has largely focused on the subthalamic nucleus (STN), though corresponding oscillatory activity has been found in the globus pallidus internus (GPi) and thalamus as well. LFPs are increasingly being recognized as a potential biomarker for sleep states in PD, which may allow for closed-loop optimization of DBS parameters to treat sleep disturbances in this population. In this review, we discuss the relationship between LFP oscillations in STN and the sleep architecture of PD patients, current trends in utilizing DBS to treat sleep disturbance, and future directions for research. In particular, we highlight the capability of novel technologies to capture and record LFP data in vivo, while patients continue therapeutic stimulation for motor symptoms. These technological advances may soon allow for real-time adaptive stimulation to treat sleep disturbances.

18.
Artigo em Inglês | MEDLINE | ID: mdl-34824889

RESUMO

Background: Globus pallidus internus (GPi) deep brain stimulation (DBS) and thalamotomy are interventions for writer's cramp (WC). Ventralis intermedius nucleus (VIM) DBS is targeted for tremor, however, many aspects of VIM DBS remained underexplored in WC. Case Report: A 62-year-old man with WC underwent DBS. Dystonic tremor improved intraoperatively with ventralis oralis anterior (VoA)/ventral oralis posterior (VoP) and with subthalamic nucleus stimulation; although greatest benefit was obtained with VIM stimulation. Sustained benefit with VIM DBS at ten months post-operative was obtained. Discussion: This case demonstrates an intraoperative approach in target selection and supports benefits of VIM DBS for WC. Highlights: This case highlights the intraoperative approach and clinical effects of VIM DBS in the treatment of medically refractory writer's cramp (WC). We contextualize our results from this case with previous reports of VoA/VoP stimulation for WC.


Assuntos
Estimulação Encefálica Profunda , Distúrbios Distônicos , Distúrbios Distônicos/terapia , Globo Pálido , Humanos , Masculino , Pessoa de Meia-Idade , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Resultado do Tratamento
19.
Stereotact Funct Neurosurg ; 99(5): 443-450, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33902054

RESUMO

INTRODUCTION: Deep brain stimulation of the zona incerta is effective at treating tremor and other forms of parkinsonism. However, the structure is not well visualized with standard MRI protocols making direct surgical targeting unfeasible and contributing to inconsistent clinical outcomes. In this study, we applied coronal gradient echo MRI to directly visualize the rostral zona incerta in Parkinson's disease patients to improve targeting for deep brain stimulation. METHODS: We conducted a prospective study to optimize and evaluate an MRI sequence to visualize the rostral zona incerta in patients with Parkinson's disease (n = 31) and other movement disorders (n = 13). We performed a contrast-to-noise ratio analysis of specific regions of interest to quantitatively assess visual discrimination of relevant deep brain structures in the optimized MRI sequence. Regions of interest were independently assessed by 2 neuroradiologists, and interrater reliability was assessed. RESULTS: Rostral zona incerta and subthalamic nucleus were well delineated in our 5.5-min MRI sequence, indicated by excellent interrater agreement between neuroradiologists for region-of-interest measurements (>0.90 intraclass coefficient). Mean contrast-to-noise ratio was high for both rostral zona incerta (6.39 ± 3.37) and subthalamic nucleus (17.27 ± 5.61) relative to adjacent white matter. There was no significant difference between mean signal intensities or contrast-to-noise ratio for Parkinson's and non-Parkinson's patients for either structure. DISCUSSION/CONCLUSION: Our optimized coronal gradient echo MRI sequence delineates subcortical structures relevant to traditional and novel deep brain stimulation targets, including the zona incerta, with high contrast-to-noise. Future studies will prospectively apply this sequence to surgical planning and postimplantation outcomes.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Zona Incerta , Humanos , Imageamento por Ressonância Magnética , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Estudos Prospectivos , Reprodutibilidade dos Testes , Zona Incerta/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA