Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(19): 12158-12167, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38684019

RESUMO

Using scanning tunneling microscopy (STM), we experimentally and theoretically investigate isolated platinum phthalocyanine (PtPc) molecules adsorbed on an atomically thin NaCl(100) film vapor deposited on Au(111). We obtain good agreement between theory and constant-height STM topography. We theoretically examine why strong distortions of STM images occur as a function of distance between the molecule and the STM tip. The images of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) exhibit for increasing distance, significant radial expansion due to electron propagation in the vacuum. Additionally, the imaged angular dependence is substantially distorted. The LUMO image has substantial intensity along the molecular diagonals where PtPc has no atoms. In the electronic transport gap, the image differs drastically from HOMO and LUMO even at energies very close to these orbitals. As the tunneling becomes increasingly off-resonant, the eight angular lobes of the HOMO or of the degenerate LUMOs diminish and reveal four lobes with maxima along the molecular axes, where both, HOMO and LUMO have little or no weight. These images are strongly influenced by low-lying PtPc orbitals that have simple angular structures.

2.
Adv Mater ; 36(23): e2310817, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38441396

RESUMO

Control of nanomaterial dimensions with atomic precision through synthetic methods is essential to understanding and engineering of nanomaterials. For single-layer inorganic materials, size and shape controls have been achieved by self-assembly and surface-catalyzed reactions of building blocks deposited at a surface. However, the scope of nanostructures accessible by such approach is restricted by the limited choice of building blocks that can be thermally evaporated onto surfaces, such as atoms or thermostable molecules. Herein this limitation is bypassed by using mass-selected molecular ions obtained via electrospray ionization as building blocks to synthesize nanostructures that are inaccessible by conventional evaporation methods. As the first example, micron-scale production of MoS2 and WS2 nanoribbons and their heterostructures on graphene are shown by the self-assembly of asymmetrically shaped building blocks obtained from the electrospray. It is expected that judicious use of electrospray-generated building blocks would unlock access to previously inaccessible inorganic nanostructures.

3.
Nat Commun ; 15(1): 1316, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351147

RESUMO

Coherent collective oscillations of electrons excited in metallic nanostructures (localized surface plasmons) can confine incident light to atomic scales and enable strong light-matter interactions, which depend nonlinearly on the local field. Direct sampling of such collective electron oscillations in real-time is crucial to performing petahertz scale optical modulation, control, and readout in a quantum nanodevice. Here, we demonstrate real-time tracking of collective electron oscillations in an Au bowtie nanoantenna, by recording photo-assisted tunnelling currents generated by such oscillations in this quantum nanodevice. The collective electron oscillations show a noninstantaneous response to the driving laser fields with a T2 decay time of nearly 8 femtoseconds. The contributions of linear and nonlinear electron oscillations in the generated tunnelling currents were precisely determined. A phase control of electron oscillations in the nanodevice is illustrated. Functioning in ambient conditions, the excitation, phase control, and read-out of coherent electron oscillations pave the way toward on-chip light-wave electronics in quantum nanodevices.

4.
Nat Commun ; 15(1): 459, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212303

RESUMO

The magnetic exchange coupling between magnetic impurities and a superconductor induce so-called Yu-Shiba-Rusinov (YSR) states which undergo a quantum phase transition (QPT) upon increasing the exchange interaction beyond a critical value. While the evolution through the QPT is readily observable, in particular if the YSR state features an electron-hole asymmetry, the concomitant change in the ground state is more difficult to identify. We use ultralow temperature scanning tunneling microscopy to demonstrate how the change in the YSR ground state across the QPT can be directly observed for a spin-1/2 impurity in a magnetic field. The excitation spectrum changes from featuring two peaks in the doublet (free spin) state to four peaks in the singlet (screened spin) ground state. We also identify a transition regime, where the YSR excitation energy is smaller than the Zeeman energy. We thus demonstrate a straightforward way for unambiguously identifying the ground state of a spin-1/2 YSR state.

5.
Langmuir ; 40(2): 1277-1285, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38171366

RESUMO

Achieving a low contact resistance has been an important issue in the design of two-dimensional (2D) semiconductor-metal interfaces. The metal contact resistance is dominated by interfacial interactions. Here, we systematically investigate 2D semiconductor-metal interfaces formed by transferring monolayer MoS2 onto prefabricated metal surfaces, such as Au and Pd, using X-ray photoelectron spectroscopy (XPS), atomic force microscopy, and Raman spectroscopy. In contrast to the MoS2/HOPG interface, the interfaces of MoS2/Au and MoS2/Pd feature the formation of weak covalent bonds. The XPS spectra reveal distinct peak positions for S-Au and S-Pd, indicating a higher doping concentration at the S-Au interface. This difference is a key factor in understanding the electronic interactions at the metal-MoS2 interfaces. Additionally, we observe that the metal surface roughness is a critical determinant of the adhesion behavior of transferred monolayer MoS2, resulting in different strains and doping concentrations. The strain on transferred MoS2 increases with an increase in substrate roughness. However, the strain is released when the roughness of metal surface surpasses a certain threshold. The dependence of the contact material and the influence of the substrate roughness on the contact interface provide critical information for improving 2D semiconductor-metal contacts and device performance.

6.
Nat Commun ; 14(1): 8335, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097575

RESUMO

The combination of low-temperature scanning tunnelling microscopy with a mass-selective electro-spray ion-beam deposition established the investigation of large biomolecules at nanometer and sub-nanometer scale. Due to complex architecture and conformational freedom, however, the chemical identification of building blocks of these biopolymers often relies on the presence of markers, extensive simulations, or is not possible at all. Here, we present a molecular probe-sensitisation approach addressing the identification of a specific amino acid within different peptides. A selective intermolecular interaction between the sensitiser attached at the tip-apex and the target amino acid on the surface induces an enhanced tunnelling conductance of one specific spectral feature, which can be mapped in spectroscopic imaging. Density functional theory calculations suggest a mechanism that relies on conformational changes of the sensitiser that are accompanied by local charge redistributions in the tunnelling junction, which, in turn, lower the tunnelling barrier at that specific part of the peptide.


Assuntos
Aminoácidos , Sondas Moleculares , Peptídeos/química , Sequência de Aminoácidos , Microscopia de Tunelamento
7.
Science ; 382(6667): 219-223, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824645

RESUMO

Proteins and lipids decorated with glycans are found throughout biological entities, playing roles in biological functions and dysfunctions. Current analytical strategies for these glycan-decorated biomolecules, termed glycoconjugates, rely on ensemble-averaged methods that do not provide a full view of positions and structures of glycans attached at individual sites in a given molecule, especially for glycoproteins. We show single-molecule analysis of glycoconjugates by direct imaging of individual glycoconjugate molecules using low-temperature scanning tunneling microscopy. Intact glycoconjugate ions from electrospray are soft-landed on a surface for their direct single-molecule imaging. The submolecular imaging resolution corroborated by quantum mechanical modeling unveils whole structures and attachment sites of glycans in glycopeptides, glycolipids, N-glycoproteins, and O-glycoproteins densely decorated with glycans.


Assuntos
Glicoproteínas , Polissacarídeos , Imagem Individual de Molécula , Glicoconjugados/química , Glicolipídeos/química , Glicoproteínas/química , Polissacarídeos/química , Mucina-1/química
8.
Angew Chem Int Ed Engl ; 62(39): e202305733, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37522820

RESUMO

Carbohydrates are the most abundant organic material on Earth and the structural "material of choice" in many living systems. Nevertheless, design and engineering of synthetic carbohydrate materials presently lag behind that for protein and nucleic acids. Bottom-up engineering of carbohydrate materials demands an atomic-level understanding of their molecular structures and interactions in condensed phases. Here, high-resolution scanning tunneling microscopy (STM) is used to visualize at submolecular resolution the three-dimensional structure of cellulose oligomers assembled on Au(1111) and the interactions that drive their assembly. The STM imaging, supported by ab initio calculations, reveals the orientation of all glycosidic bonds and pyranose rings in the oligomers, as well as details of intermolecular interactions between the oligomers. By comparing the assembly of D- and L-oligomers, these interactions are shown to be enantioselective, capable of driving spontaneous enantioseparation of cellulose chains from its unnatural enantiomer and promoting the formation of engineered carbohydrate assemblies in the condensed phases.

9.
Nat Commun ; 14(1): 3484, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311753

RESUMO

The motion of atoms is at the heart of any chemical or structural transformation in molecules and materials. Upon activation of this motion by an external source, several (usually many) vibrational modes can be coherently coupled, thus facilitating the chemical or structural phase transformation. These coherent dynamics occur on the ultrafast timescale, as revealed, e.g., by nonlocal ultrafast vibrational spectroscopic measurements in bulk molecular ensembles and solids. Tracking and controlling vibrational coherences locally at the atomic and molecular scales is, however, much more challenging and in fact has remained elusive so far. Here, we demonstrate that the vibrational coherences induced by broadband laser pulses on a single graphene nanoribbon (GNR) can be probed by femtosecond coherent anti-Stokes Raman spectroscopy (CARS) when performed in a scanning tunnelling microscope (STM). In addition to determining dephasing (~440 fs) and population decay times (~1.8 ps) of the generated phonon wave packets, we are able to track and control the corresponding quantum coherences, which we show to evolve on time scales as short as ~70 fs. We demonstrate that a two-dimensional frequency correlation spectrum unequivocally reveals the quantum couplings between different phonon modes in the GNR.

10.
Sci Rep ; 13(1): 10241, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353650

RESUMO

Conformational changes play a key role in the biological function of many proteins, thereby sustaining a multitude of processes essential to life. Thus, the imaging of the conformational space of proteins exhibiting such conformational changes is of great interest. Low-energy electron holography (LEEH) in combination with native electrospray ion beam deposition (ES-IBD) has recently been demonstrated to be capable of exploring the conformational space of conformationally highly variable proteins on the single-molecule level. While the previously studied conformations were induced by changes in environment, it is of relevance to assess the performance of this imaging method when applied to protein conformations inherently tied to a function-related conformational change. We show that LEEH imaging can distinguish different conformations of transferrin, the major iron transport protein in many organisms, by resolving a nanometer-scale cleft in the structure of the iron-free molecule (apo-transferrin) resulting from the conformational change associated with the iron binding/release process. This, along with a statistical analysis of the data, which evidences a degree of flexibility of the molecules, indicates that LEEH is a viable technique for imaging function-related conformational changes in individual proteins.


Assuntos
Holografia , Transferrina , Transferrina/metabolismo , Elétrons , Conformação Proteica
11.
ACS Nano ; 17(14): 13176-13184, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37387521

RESUMO

We report on scanning tunneling microscopy (STM) topographs of individual metal phthalocyanines (MPc) on a thin salt (NaCl) film adsorbed on a gold substrate, at tunneling energies within the molecule's electronic transport gap. Theoretical models of increasing complexity are discussed. The calculations for MPcs adsorbed on a thin NaCl layer on Au(111) demonstrate that the STM pattern rotates with the molecule's orientations─in excellent agreement with the experimental data. Thus, even the STM topography obtained for energies in the transport gap represent the structure of a one atom thick molecule. It is shown that the electronic states inside the transport gap can be rather accurately approximated by linear combinations of bound molecular orbitals (MOs). The gap states include not only the frontier orbitals but also surprisingly large contributions from energetically much lower MOs. These results will be essential for understanding processes, such as exciton creation, which can be induced by electrons tunneling through the transport gap of a molecule.

12.
Nano Lett ; 23(7): 2563-2569, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36927005

RESUMO

Near-surface negatively charged nitrogen vacancy (NV) centers hold excellent promise for nanoscale magnetic imaging and quantum sensing. However, they often experience charge-state instabilities, leading to strongly reduced fluorescence and NV coherence time, which negatively impact magnetic imaging sensitivity. This occurs even more severely at 4 K and ultrahigh vacuum (UHV, p = 2 × 10-10 mbar). We demonstrate that in situ adsorption of H2O on the diamond surface allows the partial recovery of the shallow NV sensors. Combining these with band-bending calculations, we conclude that controlled surface treatments are essential for implementing NV-based quantum sensing protocols under cryogenic UHV conditions.

13.
ACS Cent Sci ; 9(2): 151-158, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36844500

RESUMO

Molecule-surface collisions are known to initiate dynamics that lead to products inaccessible by thermal chemistry. These collision dynamics, however, have mostly been examined on bulk surfaces, leaving vast opportunities unexplored for molecular collisions on nanostructures, especially on those that exhibit mechanical properties radically different from those of their bulk counterparts. Probing energy-dependent dynamics on nanostructures, particularly for large molecules, has been challenging due to their fast time scales and high structural complexity. Here, by examining the dynamics of a protein impinging on a freestanding, single-atom-thick membrane, we discover molecule-on-trampoline dynamics that disperse the collision impact away from the incident protein within a few picoseconds. As a result, our experiments and ab initio calculations show that cytochrome c retains its gas-phase folded structure when it collides onto freestanding single-layer graphene at low energies (∼20 meV/atom). The molecule-on-trampoline dynamics, expected to be operative on many freestanding atomic membranes, enable reliable means to transfer gas-phase macromolecular structures onto freestanding surfaces for their single-molecule imaging, complementing many bioanalytical techniques.

14.
Sci Rep ; 13(1): 2451, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774393

RESUMO

Strain is inevitable in two-dimensional (2D) materials, regardless of whether the film is suspended or supported. However, the direct measurement of strain response at the atomic scale is challenging due to the difficulties of maintaining both flexibility and mechanical stability at low temperature under UHV conditions. In this work, we have implemented a compact nanoindentation system with a size of [Formula: see text] 160 mm[Formula: see text] [Formula: see text] 5.2 mm in a scanning tunneling microscope (STM) sample holder, which enables the reversible control of strain and gate electric field. A combination of gearbox and piezoelectric actuator allowed us to modulate the depth of the indentation continuously with nanometer precision. The 2D materials were transferred onto the polyimide film. Pd clamp was used to enhance the strain transfer from the polyimide from to the 2D layers. Using this unique technique, strain response of graphene lattice were observed at atomic precision. In the relaxed graphene, strain is induced mainly by local curvature. However, in the strained graphene with tented structure, the lattice parameters become more sensitive to the indentor height change and stretching strain is increased additionally. Moreover, the gate controllability is confirmed by measuring the dependence of the STM tip height on gate voltage.

15.
Adv Mater ; 35(12): e2208930, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36637996

RESUMO

Topological charge plays a significant role in a range of physical systems. In particular, observations of real-space topological objects in magnetic materials have been largely limited to skyrmions - states with a unitary topological charge. Recently, more exotic states with varying topology, such as antiskyrmions, merons, or bimerons and 3D states such as skyrmion strings, chiral bobbers, and hopfions, have been experimentally reported. Along these lines, the realization of states with higher-order topology has the potential to open new avenues of research in topological magnetism and its spintronic applications. Here, real-space imaging of such spin textures, including skyrmion, skyrmionium, skyrmion bag, and skyrmion sack states, observed in exfoliated flakes of the van der Waals magnet Fe3-x GeTe2 (FGT) is reported. These composite skyrmions may emerge from seeded, loop-like states condensed into the stripe domain structure, demonstrating the possibility to realize spin textures with arbitrary integer topological charge within exfoliated flakes of 2D magnets. The general nature of the formation mechanism motivates the search for composite skyrmion states in both well-known and new magnetic materials, which may yet reveal an even richer spectrum of higher-order topological objects.

16.
Nano Lett ; 22(23): 9236-9243, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36400013

RESUMO

Skyrmions have been well studied in chiral magnets and magnetic thin films due to their potential application in practical devices. Recently, monochiral skyrmions have been observed in two-dimensional van der Waals magnets. Their atomically flat surfaces and capability to be stacked into heterostructures offer new prospects for skyrmion applications. However, the controlled local nucleation of skyrmions within these materials has yet to be realized. Here, we utilize real-space X-ray microscopy to investigate a heterostructure composed of the 2D ferromagnet Fe3GeTe2 (FGT), an insulating hexagonal boron nitride layer, and a graphite top electrode. Upon a stepwise increase of the voltage applied between the graphite and FGT, a vertically conducting pathway can be formed. This nanocontact allows the tunable creation of individual skyrmions via single nanosecond pulses of low current density. Furthermore, time-resolved magnetic imaging highlights the stability of the nanocontact, while our micromagnetic simulations reproduce the observed skyrmion nucleation process.

17.
ACS Nano ; 16(11): 18568-18578, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36367752

RESUMO

Low-energy electron holography (LEEH) is one of the few techniques capable of imaging large and complex three-dimensional molecules, such as proteins, on the single-molecule level at subnanometer resolution. During the imaging process, the structural information about the object is recorded both in the amplitude and in the phase of the hologram. In low-energy electron holography imaging of proteins, the object's amplitude distribution, which directly reveals molecular size and shape on the single-molecule level, can be retrieved via a one-step reconstruction process. However, such a one-step reconstruction routine cannot directly recover the phase information encoded in the hologram. In order to extract the full information about the imaged molecules, we thus implemented an iterative phase retrieval algorithm and applied it to experimentally acquired low-energy electron holograms, reconstructing the phase shift induced by the protein along with the amplitude data. We show that phase imaging can map the projected atomic density of the molecule given by the number of atoms in the electron path. This directly implies a correlation between reconstructed phase shift and projected mean inner potential of the molecule, and thus a sensitivity to local changes in potential, an interpretation that is further substantiated by the strong phase signatures induced by localized charges.


Assuntos
Elétrons , Holografia , Holografia/métodos , Algoritmos , Proteínas
18.
Nat Commun ; 13(1): 3152, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672292

RESUMO

Experimental control of local spin-charge interconversion is of primary interest for spintronics. Van der Waals (vdW) heterostructures combining graphene with a strongly spin-orbit coupled two-dimensional (2D) material enable such functionality by design. Electric spin valve experiments have thus far provided global information on such devices, while leaving the local interplay between symmetry breaking, charge flow across the heterointerface and aspects of topology unexplored. Here, we probe the gate-tunable local spin polarisation in current-driven graphene/WTe2 heterostructures through magneto-optical Kerr microscopy. Even for a nominal in-plane transport, substantial out-of-plane spin accumulation is induced by a corresponding out-of-plane current flow. We present a theoretical model which fully explains the gate- and bias-dependent onset and spatial distribution of the intense Kerr signal as a result of a non-linear anomalous Hall effect in the heterostructure, which is enabled by its reduced point group symmetry. Our findings unravel the potential of 2D heterostructure engineering for harnessing topological phenomena for spintronics, and constitute an important step toward nanoscale, electrical spin control.

19.
Nano Lett ; 22(13): 5100-5106, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35704454

RESUMO

Vibrational fingerprints of molecules and low-dimension materials can be traced with subnanometer resolution by performing Tip-enhanced Raman spectroscopy (TERS) in a scanning tunneling microscope (STM). Strong atomic-scale localization of light in the plasmonic nanocavity of the STM enables high spatial resolution in STM-TERS; however, the temporal resolution is so far limited. Here, we demonstrate stable TERS measurements from subphthalocyanine (SubPc) molecules excited by ∼500 fs long laser pulses in a low-temperature (LT) ultrahigh-vacuum (UHV) STM. The intensity of the TERS signal excited with ultrashort pulses scales linearly with the increasing flux of the laser pulses and exponentially with the decreasing gap-size of the plasmonic nanocavity. Furthermore, we compare the characteristic features of TERS excited with ultrashort pulses and with a continuous-wave (CW) laser. Our work lays the foundation for future experiments of time-resolved femtosecond TERS for the investigation of molecular dynamics with utmost spatial, temporal, and energy resolutions simultaneously.

20.
Nat Commun ; 13(1): 981, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190545

RESUMO

The alkali halides are ionic compounds. Each alkali atom donates an electron to a halogen atom, leading to ions with full shells. The valence band is mainly located on halogen atoms, while, in a traditional picture, the conduction band is mainly located on alkali atoms. Scanning tunnelling microscopy of NaCl at 4 K actually shows that the conduction band is located on Cl- because the strong Madelung potential reverses the order of the Na+ 3s and Cl- 4s levels. We verify this reversal is true for both atomically thin and bulk NaCl, and discuss implications for II-VI and I-VII compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA